7.7k views
1 vote
Find the derivative of


y = (3)/(2x ^(2) )
at the point

(1. (3)/(2) )



User Zaxonov
by
3.1k points

1 Answer

5 votes

Answer:


\displaystyle y'(1, (3)/(2)) = -3

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Coordinates (x, y)
  • Functions
  • Function Notation
  • Terms/Coefficients
  • Exponential Rule [Rewrite]:
    \displaystyle b^(-m) = (1)/(b^m)

Calculus

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Explanation:

Step 1: Define


\displaystyle y = (3)/(2x^2)


\displaystyle \text{Point} \ (1, (3)/(2))

Step 2: Differentiate

  1. [Function] Rewrite [Exponential Rule - Rewrite]:
    \displaystyle y = (3)/(2)x^(-2)
  2. Basic Power Rule:
    \displaystyle y' = -2 \cdot (3)/(2)x^(-2 - 1)
  3. Simplify:
    \displaystyle y' = -3x^(-3)
  4. Rewrite [Exponential Rule - Rewrite]:
    \displaystyle y' = (-3)/(x^3)

Step 3: Solve

  1. Substitute in coordinate [Derivative]:
    \displaystyle y'(1, (3)/(2)) = (-3)/(1^3)
  2. Evaluate exponents:
    \displaystyle y'(1, (3)/(2)) = (-3)/(1)
  3. Divide:
    \displaystyle y'(1, (3)/(2)) = -3

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

User Mike Henke
by
3.0k points