8.3k views
3 votes
Approximate the definite integral using the Trapezoidal Rule and Simpson's Rule. Compare these results with the approximation of the integral using a graphing utility. (Round your answers to four decimal places.)

7∫1ln(x) dx, n = 4

User Kelevandos
by
4.5k points

1 Answer

1 vote

Answer:


\int^7_1 \in f(x) dx =7.6214

Explanation:

From the question we are told that:

Definite integral
\int^7_1 ln(x) dx, n = 4

Generally the equation for Trapezoidal Rule is mathematically given by


\int^b_a f(x) dx = (\triangle x)/(2)(f(x_0)+2f(x_1)+2f(x_2)+... 2f(x_(n-1)+f(x_n))

Where


h =\triangle x


h=(b-a)/(n)


h=(7-1)/(4)


h=1.5

Therefore

For
n =4\ \ i.e\ x_0 -x_4

The Endpoints are


a=1


a'=a+h=>1+1.5=>2.5


a''=a'+h=>2.5+1.5=>4


a'''=a''+h=>4+1.5=>5.5


b=7

Evaluating trapezoidal function at endpoints


f(x_0)=f(a)=f(1)=\in(0)=0


2f(x_1)=2f(2.5)=2\in(2.5)=1.833


2f(x_2)=2f(4)=2\in(4)=2.77


2f(x_3)=2f(5.5)=2\in(5.5)=3.41


f(x_0=f(7=\\(7)=1.945

Therefore approximation of the integral


\int^b_a f(x) dx = (\triangle x)/(2)(f(x_0)+2f(x_1)+2f(x_2)+... 2f(x_(n-1)+f(x_n))


\int^b_a f(x) dx = (3/2)/(2)(f(0)+1.833+2.77+3.41+1.945)


\int^b_a f(x) dx =7.4704

b)

Generally the equation for Simpson,s Rule is mathematically given by


\int^b_a f(x) dx =(\triangle x)/(3)(f(x_0)+4f(x_1)+2f(x_2)}+4f(x_3))+....2f(x_(n-2))+4f(x_(n-1))+f(x_n))

Where


h \triangle x


h=(b-a)/(n)


h=(7-1)/(4)


h=1.5

Therefore

For
n =4 i.e x_0 -x_4

The Endpoints are


a=1


a'=a+h=>1+1.5=>2.5


a''=a'+h=>2.5+1.5=>4


a'''=a''+h=>4+1.5=>5.5


b=7

Evaluating trapezoidal function at endpoints


f(x_0)=f(a)=f(1)= \in(0)=0


4f(x_1)=4f(2.5)=4 \In (2.5)=3.66516


2f(x_2)=2f(4)=2\in(4)=2.77


4f(x_3)=4f(5.5)=4\in(5.5)=6.8189


f(x_4)=f(b)=f(7)=in(7)=1.9456

Therefore


\int^b_a f(x) dx =(\triangle x)/(3)(f(x_0)+4f(x_1)+2f(x_2)}+4f(x_3))+....2f(x_(n-2))+4f(x_(n-1))+f(x_n))


\int^b_a f(x) dx =(1)/(2)(0+3.66516+2.77+6.8189+1.9459)


\int^b_a f(x) dx =7.6013

Therefore shown graphing utility


\int^7_1 \in f(x) dx = x\inx-x+c


\int^7_1 \in f(x) dx =7\in(7)-6


\int^7_1 \in f(x) dx =7.6214

User Mike Thrussell
by
3.9k points