Answer:
∫ F dr= 1
c
Explanation:
The correct question is -
Given -
and C : (0, 1) to

To find - Evaluate and input the result of the following integral.
Proof -
We know that,
dr = dx i + dy j
F = < F1, F2 >
Now, we know

So,

Now,
We can see that,

So,
![\int\limits^{}_C {F. dr} = \int\limits^{}_C d((tanx)/(y) )\\= [(tanx)/(y) ]\limits^{((\pi )/(4) ,1)}_((0,1))\\= [(tanx)/(y) ]\limits^{}_{((\pi )/(4) ,1)} - [(tanx)/(y) ]\limits^{}_((0,1))\\= (tan((\pi )/(4) ))/(1) - (tan 0)/(1)\\= 1 - 0\\= 1](https://img.qammunity.org/2022/formulas/mathematics/college/m01tuf7r5y2kp47s3m2xhzz7d3aj7yhvm6.png)
∴ we get
∫ F dr= 1
c