Answer:
Point A(9, 3)
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality
Algebra I
- Coordinates (x, y)
- Functions
- Function Notation
- Terms/Coefficients
- Anything to the 0th power is 1
- Exponential Rule [Rewrite]:
- Exponential Rule [Root Rewrite]:
Calculus
Derivatives
Derivative Notation
Derivative of a constant is 0
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]:
![\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)](https://img.qammunity.org/2022/formulas/mathematics/high-school/vue68srn3fe6bds4idxorm97z7tgwelamw.png)
Explanation:
Step 1: Define
Identify
![\displaystyle y = √(x)](https://img.qammunity.org/2022/formulas/mathematics/high-school/cc7ii97jya3brj6emkc6mbcnzltuigp1mj.png)
![\displaystyle y' = (1)/(6)](https://img.qammunity.org/2022/formulas/mathematics/high-school/k0d6u2a0w1951evxxslzzf527emmvh0618.png)
Step 2: Differentiate
- [Function] Rewrite [Exponential Rule - Root Rewrite]:
![\displaystyle y = x^{(1)/(2)}](https://img.qammunity.org/2022/formulas/mathematics/high-school/zmfif5p73rmortgjxqgwkl5yfh9pz5x0wb.png)
- Basic Power Rule:
![\displaystyle y' = (1)/(2)x^{(1)/(2) - 1}](https://img.qammunity.org/2022/formulas/mathematics/high-school/3ywxqro0lm3de8h99smbp1kmjl4abkui30.png)
- Simplify:
![\displaystyle y' = (1)/(2)x^{-(1)/(2)}](https://img.qammunity.org/2022/formulas/mathematics/high-school/c7afei944lqtgwzsrmxxjq8kgbklw6xffr.png)
- [Derivative] Rewrite [Exponential Rule - Rewrite]:
![\displaystyle y' = \frac{1}{2x^{(1)/(2)}}](https://img.qammunity.org/2022/formulas/mathematics/high-school/knchkjrdtpdokmeaqsmnahhul2jteexvqm.png)
- [Derivative] Rewrite [Exponential Rule - Root Rewrite]:
![\displaystyle y' = (1)/(2√(x))](https://img.qammunity.org/2022/formulas/mathematics/high-school/hd0ujjih40236kzexdmt8cowjnd9q9xcmi.png)
Step 3: Solve
Find coordinates of A.
x-coordinate
- Substitute in y' [Derivative]:
![\displaystyle (1)/(6) = (1)/(2√(x))](https://img.qammunity.org/2022/formulas/mathematics/high-school/rgjq42swpsn2jff2qi97mfyl1vru9jba8c.png)
- [Multiplication Property of Equality] Multiply 2 on both sides:
![\displaystyle (1)/(3) = (1)/(√(x))](https://img.qammunity.org/2022/formulas/mathematics/high-school/bkbfyi2nlo89wwtzrnm493le16mr3dcz7h.png)
- [Multiplication Property of Equality] Cross-multiply:
![\displaystyle √(x) = 3](https://img.qammunity.org/2022/formulas/mathematics/high-school/e5gnpdtvrywdt0jwdq69qtky606frbuv1p.png)
- [Equality Property] Square both sides:
![\displaystyle x = 9](https://img.qammunity.org/2022/formulas/mathematics/high-school/gkls7dvix1ctvz1bru48mho4lcmvrx97f2.png)
y-coordinate
- Substitute in x [Function]:
![\displaystyle y = √(9)](https://img.qammunity.org/2022/formulas/mathematics/high-school/tpnc8l9ipopu58gcmnfb62e5xnttno7lny.png)
- [√Radical] Evaluate:
![\displaystyle y = 3](https://img.qammunity.org/2022/formulas/mathematics/high-school/9cemvozbjbqyzri80hdqax98kk0nxcke4b.png)
∴ Coordinates of A is (9, 3).
Topic: AP Calculus AB/BC (Calculus I/II)
Unit: Derivatives
Book: College Calculus 10e