Answer:
--- Trinomial
--- Binomial
Explanation:
Given
![n^2 + (2n)/(3)](https://img.qammunity.org/2022/formulas/mathematics/college/ydlis49b8owjqoo4q9a6ct3zl8majzhhtl.png)
Solving (a): Perfect square trinomial
We have:
![n^2 + (2n)/(3)](https://img.qammunity.org/2022/formulas/mathematics/college/ydlis49b8owjqoo4q9a6ct3zl8majzhhtl.png)
Express as an equation
![n^2 + (2n)/(3) =](https://img.qammunity.org/2022/formulas/mathematics/college/qhx4e0lbbm489xo4s9v4wmzjsnvcecsive.png)
Start----------------------------
Take coefficient of n i.e. (2/3)
Half it: i.e. (1/3)
Square it: (1/63^2
Add to both sides of the equation
---------------------------End
So, we have:
![n^2 + (2n)/(3) + ((1)/(3))^2 = ((1)/(3))^2](https://img.qammunity.org/2022/formulas/mathematics/college/re1f1d1ohox764nm0g092t0cvmrpxmonty.png)
Remove brackets
![n^2 + (2n)/(3) + (1)/(9) = (1)/(9)](https://img.qammunity.org/2022/formulas/mathematics/college/3jdsnh92hrxs8yiy0wpcide3sehtu1298c.png)
Solving (b): Binomial Squared
![n^2 + (2n)/(3) + (1)/(9) = (1)/(9)](https://img.qammunity.org/2022/formulas/mathematics/college/3jdsnh92hrxs8yiy0wpcide3sehtu1298c.png)
Expand
![n^2 + (n)/(3)+ (n)/(3) + (1)/(9) = (1)/(9)](https://img.qammunity.org/2022/formulas/mathematics/college/hwqqq2tm0rn14y4038voojnenm0qwu83b4.png)
Factorize:
![n(n + (1)/(3))+ (1)/(3)(n + (1)/(3)) = (1)/(9)](https://img.qammunity.org/2022/formulas/mathematics/college/9otlvs7u926a91izgdxl537lggpbv05bbu.png)
Factor out n + 1/3
![(n + (1)/(3))(n + (1)/(3)) = (1)/(9)](https://img.qammunity.org/2022/formulas/mathematics/college/a68auq2u4ej69szg1a31uvb4xf6u3lpakm.png)
Express as square
![(n + (1)/(3))^2 = (1)/(9)](https://img.qammunity.org/2022/formulas/mathematics/college/lz99d3ey65c56phzy8z6k6r4pp9jclgr5b.png)