155k views
1 vote
Simplify the expression. Someone help please...

Simplify the expression. Someone help please...-example-1
User F Blanchet
by
8.5k points

1 Answer

3 votes

Answer:


\sqrt[4]{768x^8y^5} = 4x^2y \sqrt[4]{3y}

Explanation:

Given


\sqrt[4]{768x^8y^5}

Required

Simplify

We have:


\sqrt[4]{768x^8y^5}

Expand 768


\sqrt[4]{768x^8y^5} = \sqrt[4]{256 * 3 * x^8y^5}

Split


\sqrt[4]{768x^8y^5} = \sqrt[4]{256} * \sqrt[4]{3 * x^8y^5}


\sqrt[4]{256} = 4

So, we have:


\sqrt[4]{768x^8y^5} = 4* \sqrt[4]{3 * x^8y^5}

Expand y^5


\sqrt[4]{768x^8y^5} = 4* \sqrt[4]{3 * x^8*y *y^4}

Rewrite as:


\sqrt[4]{768x^8y^5} = 4* \sqrt[4]{3*y * x^8 *y^4}


\sqrt[4]{768x^8y^5} = 4* \sqrt[4]{3y * x^8 *y^4}

Split


\sqrt[4]{768x^8y^5} = 4* \sqrt[4]{3y} * \sqrt[4]{x^8 *y^4}

Apply the following law of indices


\sqrt[a]{b} = b^(1)/(a)


\sqrt[4]{768x^8y^5} = 4* \sqrt[4]{3y} * (x^8 *y^4)^(1)/(4)

Expand


\sqrt[4]{768x^8y^5} = 4* \sqrt[4]{3y} * x^{8*(1)/(4)} *y^{4*(1)/(4)}


\sqrt[4]{768x^8y^5} = 4* \sqrt[4]{3y} * x^2y

Rewrite as:


\sqrt[4]{768x^8y^5} = 4* x^2y* \sqrt[4]{3y}


\sqrt[4]{768x^8y^5} = 4x^2y \sqrt[4]{3y}

User Bo Fjord Jensen
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories