Solution :
Given :
The angle of the first maximum with the center is given by :
![$a=\tan^(-1)\left((0.488)/(1.88)\right)$](https://img.qammunity.org/2022/formulas/physics/college/zrg9q3dnm82pmgfjpp4pnfhry3qv3kb8st.png)
= 14.5°
The grating distance can be calculated as :
![$d=\frac{1 \ cm}{5308 \text{ slits}}$](https://img.qammunity.org/2022/formulas/physics/college/clfgpfywq4ilq1zn1h5wmoz5vh5038aii3.png)
=
![$1.88 * 10^(-4) \ m$](https://img.qammunity.org/2022/formulas/physics/college/bo900a9vkf0w56cdxrcyspsytra0zbfs9o.png)
When the principal maxima yields at y = 0.488 m and the length from the wall 1.88 m. Thus the equation of the wavelength is :
, where n = 1
![$=1.88 * 10^(-4) * \sin (14.5)$](https://img.qammunity.org/2022/formulas/physics/college/99e60o0cm6l7j9626tlukapamomgn6ij5i.png)
![$=4.70 * 10^(-5) \ m$](https://img.qammunity.org/2022/formulas/physics/college/gasg7ulcgmjh51dmrdt2yf5z0u45h2dy34.png)