178k views
1 vote
Refrigerant-134a enters the expansion valve of a refrigeration system at 120 psia as a saturated liquid and leaves at 20 psia. Determine the temperature and internal energy changes across the valve. Use data from the steam tables.

1 Answer

3 votes

Solution :


$P_1 = 120 \ psia$


$P_2 = 20 \ psia$

Using the data table for refrigerant-134a at P = 120 psia


$h_1=h_f=40.8365 \ Btu/lbm$


$u_1=u_f=40.5485 \ Btu/lbm$


$T_(sat)=87.745^\circ F$


$h_2=h_1=40.8365 \ Btu/lbm$

For pressure, P = 20 psia


$h_(2f) = 11.445 \ Btu/lbm$


$h_(2g) = 102.73 \ Btu/lbm$


$u_(2f) = 11.401 \ Btu/lbm$


$u_(2g) = 94.3 \ Btu/lbm$


$T_2=T_(sat)=-2.43^\circ F$

Change in temperature,
$\Delta T = T_2-T_1$


$\Delta T = -2.43-87.745$


$\Delta T=-90.175^\circ F$

Now we find the quality,


$h_2=h_f+x_2(h_g-h_f)$


$40.8365=11.445+x_2(91.282)$


$x_2=0.32198$

The final energy,


$u_2=u_f+x_2.u_(fg)$


$=11.401+0.32198(82.898)$


$=38.09297 \ Btu/lbm$

Change in internal energy


$\Delta u= u_2-u_1$

= 38.09297-40.5485

= -2.4556

User Bouh
by
5.2k points