151k views
2 votes
find the volume of the solid formed by revolving the region bounded by the graphs of y = 4x - x^2 and f(x) = x^2 from [0,2] about the... a) x-axis.

User Deryl
by
5.4k points

1 Answer

1 vote

Answer:


v = (32\pi)/(3)

or


v=33.52

Explanation:

Given


f(x) = 4x - x^2


g(x) = x^2


[a,b] = [0,2]

Required

The volume of the solid formed

Rotating about the x-axis.

Using the washer method to calculate the volume, we have:


\int dv = \int\limit^b_a \pi(f(x)^2 - g(x)^2) dx

Integrate


v = \int\limit^b_a \pi(f(x)^2 - g(x)^2)\ dx


v = \pi \int\limit^b_a (f(x)^2 - g(x)^2)\ dx

Substitute values for a, b, f(x) and g(x)


v = \pi \int\limit^2_0 ((4x - x^2)^2 - (x^2)^2)\ dx

Evaluate the exponents


v = \pi \int\limit^2_0 (16x^2 - 4x^3 - 4x^3 + x^4 - x^4)\ dx

Simplify like terms


v = \pi \int\limit^2_0 (16x^2 - 8x^3 )\ dx

Factor out 8


v = 8\pi \int\limit^2_0 (2x^2 - x^3 )\ dx

Integrate


v = 8\pi [ (2x^(2+1))/(2+1) - (x^(3+1))/(3+1) ]|\limit^2_0


v = 8\pi [ (2x^(3))/(3) - (x^(4))/(4) ]|\limit^2_0

Substitute 2 and 0 for x, respectively


v = 8\pi ([ (2*2^(3))/(3) - (2^(4))/(4) ] - [ (2*0^(3))/(3) - (0^(4))/(4) ])


v = 8\pi ([ (2*2^(3))/(3) - (2^(4))/(4) ] - [ 0 - 0])


v = 8\pi [ (2*2^(3))/(3) - (2^(4))/(4) ]


v = 8\pi [ (16)/(3) - (16)/(4) ]

Take LCM


v = 8\pi [ (16*4- 16 * 3)/(12)]


v = 8\pi [ (64- 48)/(12)]


v = 8\pi * (16)/(12)

Simplify


v = 8\pi * (4)/(3)


v = (32\pi)/(3)

or


v=(32)/(3) * (22)/(7)


v=(32*22)/(3*7)


v=(704)/(21)


v=33.52

User Marin Todorov
by
5.7k points