Answer:
The candle has a radius of 8 centimeters and 16 centimeters and uses an amount of approximately 1206.372 square centimeters.
Explanation:
The volume (
), in cubic centimeters, and surface area (
), in square centimeters, formulas for the candle are described below:
(1)
(2)
Where:
- Radius, in centimeters.
- Height, in centimeters.
By (1) we have an expression of the height in terms of the volume and the radius of the candle:
![h = (V)/(\pi\cdot r^(2))](https://img.qammunity.org/2022/formulas/mathematics/college/r1x8uxegn0azqb3o1khhv9us8w8o9j88px.png)
By substitution in (2) we get the following formula:
![A_(s) = 2\pi \cdot r^(2) + 2\pi\cdot r\cdot \left((V)/(\pi\cdot r^(2)) \right)](https://img.qammunity.org/2022/formulas/mathematics/college/gtj5syeaazjqqmk56nt5vxqje6ltrr28bf.png)
![A_(s) = 2\pi \cdot r^(2) +(2\cdot V)/(r)](https://img.qammunity.org/2022/formulas/mathematics/college/6tndm8aof231hkg0djreiwzx8vhe7ra2jl.png)
Then, we derive the formulas for the First and Second Derivative Tests:
First Derivative Test
![4\pi\cdot r -(2\cdot V)/(r^(2)) = 0](https://img.qammunity.org/2022/formulas/mathematics/college/2l756t59kk4cnfso912eijcvpqalz6mr8e.png)
![4\pi\cdot r^(3) - 2\cdot V = 0](https://img.qammunity.org/2022/formulas/mathematics/college/90avhmu157q81pshuzcik6wl5zwz86y7fc.png)
![2\pi\cdot r^(3) = V](https://img.qammunity.org/2022/formulas/mathematics/college/t8vlcu2jdnryfn07iyvbfjoye4e2xl9707.png)
![r = \sqrt[3]{(V)/(2\pi) }](https://img.qammunity.org/2022/formulas/mathematics/college/agr5vf2az2rgokgxysqrh3nfiz0icog4n0.png)
There is just one result, since volume is a positive variable.
Second Derivative Test
![A_(s)'' = 4\pi + (4\cdot V)/(r^(3))](https://img.qammunity.org/2022/formulas/mathematics/college/vp8g85wy45fu2h0sg9mgth6vtydvq6ixn5.png)
If
:
![A_(s) = 4\pi + (4\cdot V)/((V)/(2\pi) )](https://img.qammunity.org/2022/formulas/mathematics/college/3d2uwuga03cm96nmqoqo5nmgfk3mj70741.png)
(which means that the critical value leads to a minimum)
If we know that
, then the dimensions for the minimum amount of plastic are:
![r = \sqrt[3]{(V)/(2\pi) }](https://img.qammunity.org/2022/formulas/mathematics/college/agr5vf2az2rgokgxysqrh3nfiz0icog4n0.png)
![r = \sqrt[3]{(3217\,cm^(3))/(2\pi)}](https://img.qammunity.org/2022/formulas/mathematics/college/wkbo63749ccc761av54cj440xy5t85ulsm.png)
![r = 8\,cm](https://img.qammunity.org/2022/formulas/mathematics/college/x3mge9oswdfr11ydx5ojtqvcfzo69dzo7r.png)
![h = (V)/(\pi\cdot r^(2))](https://img.qammunity.org/2022/formulas/mathematics/college/r1x8uxegn0azqb3o1khhv9us8w8o9j88px.png)
![h = (3217\,cm^(3))/(\pi\cdot (8\,cm)^(2))](https://img.qammunity.org/2022/formulas/mathematics/college/hqbwr1fl34t3vxmnq12hssusg020nuwm0c.png)
![h = 16\,cm](https://img.qammunity.org/2022/formulas/mathematics/college/n4bl1rnul4riyrw6tnv0i2bfrtx5nkz3xr.png)
And the amount of plastic needed to cover the outside of the candle for packaging is:
![A_(s) = 2\pi\cdot r^(2) + 2\pi\cdot r \cdot h](https://img.qammunity.org/2022/formulas/mathematics/college/memd5nxfe8c9ccf19ryur661w00sczu3iw.png)
![A_(s) = 2\pi\cdot (8\,cm)^(2) + 2\pi\cdot (8\,cm)\cdot (16\,cm)](https://img.qammunity.org/2022/formulas/mathematics/college/q2x3m0j6sf87aawyrleb8rwzqgsldmlhlb.png)
![A_(s) \approx 1206.372\,cm^(2)](https://img.qammunity.org/2022/formulas/mathematics/college/8g8osrnnewvwgz7sqi6w8g40vctxr1l6sd.png)
The candle has a radius of 8 centimeters and 16 centimeters and uses an amount of approximately 1206.372 square centimeters.