110k views
2 votes
Prove :


\large{ \tt{ (1)/( \sec \alpha + 1 ) - \frac{ \cos\alpha }{ { \sin^(2) \alpha } } = \frac{ \cos \alpha }{ { \sin}^(2) \alpha } - (1)/( \sec \alpha - 1) }}
*Irrelevant / Random answers will be reported!​

1 Answer

6 votes

Answer:

See Below.

Explanation:

We want to verify the equation:


\displaystyle (1)/(\sec\alpha+1)-(\cos\alpha)/(\sin^2\alpha)=(\cos\alpha )/(\sin^2\alpha )-(1)/(\sec\alpha -1)

We can convert sec(α) to 1 / cos(α):


\displaystyle (1)/(1/\cos\alpha+1)-(\cos\alpha)/(\sin^2\alpha)=(\cos\alpha )/(\sin^2\alpha )-(1)/(\sec\alpha -1)

Multiply both layers of the first fraction by cos(α):


\displaystyle (\cos\alpha)/(1+\cos\alpha)-(\cos\alpha)/(\sin^2\alpha)=(\cos\alpha )/(\sin^2\alpha )-(1)/(\sec\alpha -1)

Create a common denominator. We can multiply the first fraction by (1 - cos(α)):


\displaystyle (\cos\alpha(1-\cos\alpha))/((1+\cos\alpha)(1-\cos\alpha))-(\cos\alpha)/(\sin^2\alpha)=(\cos\alpha )/(\sin^2\alpha )-(1)/(\sec\alpha -1)

Simplify:


\displaystyle (\cos\alpha(1-\cos\alpha))/(1-\cos^2\alpha)-(\cos\alpha)/(\sin^2\alpha)=(\cos\alpha )/(\sin^2\alpha )-(1)/(\sec\alpha -1)

From the Pythagorean Identity, we know that cos²(α) + sin²(α) = 1 or equivalently, 1 - cos²(α) = sin²(α). Substitute:


\displaystyle (\cos\alpha(1-\cos\alpha))/(\sin^2\alpha)-(\cos\alpha)/(\sin^2\alpha)=(\cos\alpha )/(\sin^2\alpha )-(1)/(\sec\alpha -1)

Subtract:


\displaystyle (\cos\alpha(1-\cos\alpha)-\cos\alpha)/(\sin^2\alpha)=(\cos\alpha)/(\sin^2\alpha)-(1)/(\sec\alpha-1)

Distribute:


\displaystyle (\cos\alpha-\cos^2\alpha-\cos\alpha)/(\sin^2\alpha)=(\cos\alpha)/(\sin^2\alpha)-(1)/(\sec\alpha-1)

Rewrite:


\displaystyle ((\cos\alpha)-(\cos^2\alpha+\cos\alpha))/(\sin^2\alpha)=(\cos\alpha)/(\sin^2\alpha)-(1)/(\sec\alpha-1)

Split:


\displaystyle (\cos\alpha)/(\sin^2\alpha)-(\cos^2\alpha+\cos\alpha)/(\sin^2\alpha)=(\cos\alpha)/(\sin^2\alpha)-(1)/(\sec\alpha-1)

Factor the second fraction, and substitute sin²(α) for 1 - cos²(α):


\displaystyle (\cos\alpha)/(\sin^2\alpha)-(\cos\alpha(\cos\alpha+1))/(1-\cos^2\alpha)=(\cos\alpha)/(\sin^2\alpha)-(1)/(\sec\alpha-1)

Factor:


\displaystyle (\cos\alpha)/(\sin^2\alpha)-(\cos\alpha(\cos\alpha+1))/((1-\cos\alpha)(1+\cos\alpha))=(\cos\alpha)/(\sin^2\alpha)-(1)/(\sec\alpha-1)

Cancel:


\displaystyle (\cos\alpha)/(\sin^2\alpha)-(\cos\alpha)/((1-\cos\alpha))=(\cos\alpha)/(\sin^2\alpha)-(1)/(\sec\alpha-1)

Divide the second fraction by cos(α):


\displaystyle (\cos\alpha)/(\sin^2\alpha)-(1)/(\sec\alpha-1)=\displaystyle (\cos\alpha)/(\sin^2\alpha)-(1)/(\sec\alpha-1)

Hence proven.

User Karianpour
by
2.9k points