14.0k views
1 vote
Solve the equation 9x^2_y^2=45 and 3x_y=3​

User Codingrose
by
4.2k points

1 Answer

2 votes

Answer:

x=3

Step-by-step explanation:

3x-y=3 -----1

9x^2-y^2=45-----2

making x the subject of the formular in equ 1

3x=3 + y

x =(3 + y)/3

substituting x with (3 + y)/3 in equ 2

9[(3 + y)/3]^2 - y^2=45

9[(1 + y/3)]^2 - y^2=45

9[(1 + y/3)(1 + y/3)] - y^2=45

9[1 + y/3 + y/3 + y^2/9] - y^2=45

9[1 + (2y)/3 + (y^2)/9] - y^2=45

9 + 6y + y^2 - y^2=45

9 + 6y =45

6y=45-9

6y = 36

y = 36/6

y = 6

substituting y for 6 in equ 1

3x-6=3

3x=3 + 6

3x = 9

x =9/3

x=3

User Nikita Koksharov
by
4.1k points