152k views
2 votes
Find the projection of u onto v
URGENT HELP

Find the projection of u onto v URGENT HELP-example-1
User Eik
by
8.5k points

1 Answer

3 votes

Given:

Two vectors are:


u=\left <0,6\right>


v=\left <2,17\right>

To find:

The projection of u onto v.

Solution:

Magnitude of a vector
v=\left <a,b\right> is:


|v|=√(a^2+b^2)

Dot product of two vector
v_1=\left <a_1,b_1\right> and
v_2=\left <a_2,b_2\right> is:


v_1\cdot v_2=a_1a_2+b_1b_2

Formula for projection of u onto v is:


Proj_vu=(u\cdot v)/(|v|^2)v


Proj_vu=(\left <0,6\right>\cdot \left <2,17\right>)/((√(2^2+17^2)^2))\left <2,17\right>


Proj_vu=(0\cdot 2+6\cdot 17)/(4+289)\left <2,17\right>


Proj_vu=(0+102)/(293)\left <2,17\right>

On further simplification, we get


Proj_vu=(102)/(293)\left <2,17\right>


Proj_vu=\left <(102)/(293)\cdot 2,(102)/(293)\cdot 17\right>


Proj_vu=\left <(204)/(293),(1734)/(293)\right>

Therefore, the projection of u onto v is
Proj_vu=\left <(204)/(293),(1734)/(293)\right>.

User Federico Mastrini
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories