182k views
4 votes
Simplify. From Algebra. Plz help me​

Simplify. From Algebra. Plz help me​-example-1

1 Answer

6 votes

Answer:


(a)/((a-c)\cdot (b-c))

Explanation:

We must use algebraic means to simplify the equation given. The procedure is presented below:

1)
(a)/((a-b)\cdot (a-c)) + (b)/((b-c)\dot (b-a) ) + (c)/((a-c)\cdot (b-c)) Given.

2)
(a)/((a-b)\cdot (a-c)) + (b)/(-(a-b)\cdot (b-c)) + (c)/((a-c)\cdot (b-c)) Commutative property/Distributive property/
(-1)\cdot a = -a/
(-1)\cdot (-a) = a

3)
(a)/((a-b)\cdot (a-c)) + ((-b))/((a-b)\cdot (b-c)) + (c)/((a-c)\cdot (b-c))
-(a)/(b) = (-a)/(b) = (a)/(-b)

4)
(a\cdot (b-c))/((a- b)\cdot (a-c)\cdot (b-c)) + ((-b)\cdot (a-c))/((a-b)\cdot (b-c)\cdot (a-c)) + (c\cdot (a-b))/((a-c)\cdot (b-c)\cdot (a-b)) Modulative property/Existence of aditive inverse/Definition of division

5)
(a\cdot (a-c) + (-b)\cdot (a-c)+c\cdot (a-b))/((a-b)\cdot (a-c)\cdot (b-c)) Distributive property/Definition of division

6)
(a^(2)-a\cdot c -a\cdot b + b\cdot c+a\cdot c-b\cdot c)/((a-b)\cdot (a-c)\cdot (b-c)) Distributive and commutative properties/
(-a) \cdot b = -a\cdot b/
(-a)\cdot (-b) = a\cdot b/Definition of power

7)
(a^(2)-a\cdot b)/((a-b)\cdot (a-c)\cdot (b-c)) Commutative, associative and modulative properties/Existence of additive inverse

8)
(a\cdot (a-b))/((a-b)\cdot (a-c)\cdot (b-c)) Commutative property

9)
(a)/((a-c)\cdot (b-c)) Commutative and associative properties/Existence of multiplicative inverse/Result

User Redreinard
by
4.0k points