182k views
4 votes
Simplify. From Algebra. Plz help me​

Simplify. From Algebra. Plz help me​-example-1

1 Answer

6 votes

Answer:


(a)/((a-c)\cdot (b-c))

Explanation:

We must use algebraic means to simplify the equation given. The procedure is presented below:

1)
(a)/((a-b)\cdot (a-c)) + (b)/((b-c)\dot (b-a) ) + (c)/((a-c)\cdot (b-c)) Given.

2)
(a)/((a-b)\cdot (a-c)) + (b)/(-(a-b)\cdot (b-c)) + (c)/((a-c)\cdot (b-c)) Commutative property/Distributive property/
(-1)\cdot a = -a/
(-1)\cdot (-a) = a

3)
(a)/((a-b)\cdot (a-c)) + ((-b))/((a-b)\cdot (b-c)) + (c)/((a-c)\cdot (b-c))
-(a)/(b) = (-a)/(b) = (a)/(-b)

4)
(a\cdot (b-c))/((a- b)\cdot (a-c)\cdot (b-c)) + ((-b)\cdot (a-c))/((a-b)\cdot (b-c)\cdot (a-c)) + (c\cdot (a-b))/((a-c)\cdot (b-c)\cdot (a-b)) Modulative property/Existence of aditive inverse/Definition of division

5)
(a\cdot (a-c) + (-b)\cdot (a-c)+c\cdot (a-b))/((a-b)\cdot (a-c)\cdot (b-c)) Distributive property/Definition of division

6)
(a^(2)-a\cdot c -a\cdot b + b\cdot c+a\cdot c-b\cdot c)/((a-b)\cdot (a-c)\cdot (b-c)) Distributive and commutative properties/
(-a) \cdot b = -a\cdot b/
(-a)\cdot (-b) = a\cdot b/Definition of power

7)
(a^(2)-a\cdot b)/((a-b)\cdot (a-c)\cdot (b-c)) Commutative, associative and modulative properties/Existence of additive inverse

8)
(a\cdot (a-b))/((a-b)\cdot (a-c)\cdot (b-c)) Commutative property

9)
(a)/((a-c)\cdot (b-c)) Commutative and associative properties/Existence of multiplicative inverse/Result

User Redreinard
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories