The solutions to the equation
are x = 1 and x = -5 , corresponding to option a
To find the solutions to the quadratic equation
, we can use the quadratic formula:
![\[ x = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{{2a}} \]](https://img.qammunity.org/2022/formulas/mathematics/college/by3mxqem5r1lbfydmc6zsy61zoon0x4kgm.png)
Where:
![\( a \) is the coefficient of \( x^2 \) (which is 1),](https://img.qammunity.org/2022/formulas/mathematics/college/fbl1fb8c306723v4pr8i7an5agp3d8x8ai.png)
![- \( b \) is the coefficient of \( x \) (which is 4),](https://img.qammunity.org/2022/formulas/mathematics/college/s4oj096flrq1j60zyv4xuggn9bd0ok23ea.png)
![\( c \) is the constant term (which is -5).](https://img.qammunity.org/2022/formulas/mathematics/college/tp3xj8rejnz9sc6m3ofuqxyxu4zsr6aw2b.png)
The discriminant
will determine the nature of the roots. Here, the discriminant is
which is positive, indicating two real and distinct solutions.
Applying the quadratic formula:
![\[ x = \frac{{-4 \pm \sqrt{{16 + 20}}}}{2} \]](https://img.qammunity.org/2022/formulas/mathematics/college/vl3ckpj48wskpb2aoicvq1nhw2s38w86ua.png)
![\[ x = \frac{{-4 \pm √(36)}}{2} \]](https://img.qammunity.org/2022/formulas/mathematics/college/7o4miryagnvzae8wgn3nfn9g1lkiuumubh.png)
![\[ x = \frac{{-4 \pm 6}}{2} \]](https://img.qammunity.org/2022/formulas/mathematics/college/74xe52tlacnv1pux9rzwj7py7u0rbybvwt.png)
This gives us two solutions:
![\[ x_1 = \frac{{-4 + 6}}{2} = 1 \]](https://img.qammunity.org/2022/formulas/mathematics/college/mzw6gtemhnbmmq1g9jv4aa69pynwvecr3p.png)
![\[ x_2 = \frac{{-4 - 6}}{2} = -5 \]](https://img.qammunity.org/2022/formulas/mathematics/college/iq9ogueeryonk6o363lpbxj9tin44acw0z.png)