Given:
The equation is:
![4x+2xy^2+44=y^3](https://img.qammunity.org/2022/formulas/mathematics/high-school/ji4crzu4zy95nkv2uab8nmm8553fvcb59m.png)
To find:
The equation of the tangent on the given equation at point (-3,2).
Solution:
We have,
![4x+2xy^2+44=y^3](https://img.qammunity.org/2022/formulas/mathematics/high-school/ji4crzu4zy95nkv2uab8nmm8553fvcb59m.png)
Differentiate with respect to x.
![4(1)+2[x(2yy')+y^2(1)]+0=3y^2y'](https://img.qammunity.org/2022/formulas/mathematics/high-school/r4gafp2dnnee4i962z25d8s33zr9zcpou2.png)
![4+4xyy'+2y^2=3y^2y'](https://img.qammunity.org/2022/formulas/mathematics/high-school/klerays02utwjn2rv65mwbcyjxnnhz63au.png)
![4+2y^2=3y^2y'-4xyy'](https://img.qammunity.org/2022/formulas/mathematics/high-school/naf54higs7okmdbm271kb9n2y5dryidu9s.png)
![4+2y^2=(3y^2-4xy)y'](https://img.qammunity.org/2022/formulas/mathematics/high-school/q20cupu5h6hop62s7ne4dktww92vqtajrh.png)
Isolate y'.
![(4+2y^2)/(3y^2-4xy)=y'](https://img.qammunity.org/2022/formulas/mathematics/high-school/73gm756o5almb98nk79vr099fs0lk38xzo.png)
Now, we need to find the value of the derivative at point (-3,2).
![y'_((-3,2))=(4+2(2)^2)/(3(2)^2-4(-3)(2))](https://img.qammunity.org/2022/formulas/mathematics/high-school/8538gqqz8eiyaiq8lkqilmhpczuhsnh8ti.png)
![y'_((-3,2))=(4+8)/(12+24)](https://img.qammunity.org/2022/formulas/mathematics/high-school/ynkt7z2668tcnws224mcrcxh6u72wonrlj.png)
![y'_((-3,2))=(12)/(36)](https://img.qammunity.org/2022/formulas/mathematics/high-school/328yxsbeaai2ug66g4qu7z7e5iv3xsnn81.png)
![y'_((-3,2))=(1)/(3)](https://img.qammunity.org/2022/formulas/mathematics/high-school/g2ymr57lvbmxokr2qulo8ncmd0nb4ej1jv.png)
It means the slope of the tangent line is
.
The equation of tangent line that passes through the point (-3,2) with slope
is:
![y-y_1=m(x-x_1)](https://img.qammunity.org/2022/formulas/mathematics/middle-school/vtillwnvtmv4154m1gj6eh3pnty0mf96g6.png)
![y-2=(1)/(3)(x-(-3))](https://img.qammunity.org/2022/formulas/mathematics/high-school/8tdwkd5u7zchbz2lu5sdttyxp5kubu889f.png)
![y-2=(1)/(3)x+1](https://img.qammunity.org/2022/formulas/mathematics/high-school/z6yytwpkreot4hxlvwteop3czu39b1acg3.png)
![y=(1)/(3)x+1+2](https://img.qammunity.org/2022/formulas/mathematics/high-school/9tsg4voiff6tug0km5j16cj4a7j1rxwi3o.png)
![y=(1)/(3)x+3](https://img.qammunity.org/2022/formulas/mathematics/high-school/crvofbcp1ma90v6fr7sxekuyi40ga6549m.png)
Therefore, the equation of tangent line is
.