323,898 views
36 votes
36 votes
(02.05 MC)

Using the completing-the-square method, rewrite f(x) = x2 - 6x + 2 in vertex form.
Of(x) = (x - 3)2
Of(x) = (x - 3)2 + 2
Of(x) = (x - 3)2 - 7
Of(x) = (x - 3)2 + 9

User Yoshimitsu
by
2.6k points

2 Answers

28 votes
28 votes


\\ \rm\hookrightarrow x^2-6x+2


\\ \rm\hookrightarrow x^2-2(3)(x)+2


\\ \rm\hookrightarrow x^2-2(3x)+3^2-3^2+2

  • 3^2-3^2=0


\\ \rm\hookrightarrow (x-3)^2-9+2


\\ \rm\hookrightarrow (x-3)^2-7

User BCran
by
2.9k points
7 votes
7 votes

Answer:


f(x)=(x-3)^2-7

Explanation:

Use the formula:


x^2+bx+c \implies (x+(b)/(2))^2-((b)/(2){)^2+c


f(x) = x^2 - 6x + 2


\implies f(x)=(x-\frac62)^2-(\frac62)^2+2


\implies f(x)=(x-3)^2-3^2+2


\implies f(x)=(x-3)^2-9+2


\implies f(x)=(x-3)^2-7

User Mlc
by
3.0k points