130k views
1 vote
(02.05 MC)

Using the completing-the-square method, rewrite f(x) = x2 - 6x + 2 in vertex form.
Of(x) = (x - 3)2
Of(x) = (x - 3)2 + 2
Of(x) = (x - 3)2 - 7
Of(x) = (x - 3)2 + 9

2 Answers

12 votes


\\ \rm\hookrightarrow x^2-6x+2


\\ \rm\hookrightarrow x^2-2(3)(x)+2


\\ \rm\hookrightarrow x^2-2(3x)+3^2-3^2+2

  • 3^2-3^2=0


\\ \rm\hookrightarrow (x-3)^2-9+2


\\ \rm\hookrightarrow (x-3)^2-7

User Peterchen
by
9.3k points
2 votes

Answer:


f(x)=(x-3)^2-7

Explanation:

Use the formula:


x^2+bx+c \implies (x+(b)/(2))^2-((b)/(2){)^2+c


f(x) = x^2 - 6x + 2


\implies f(x)=(x-\frac62)^2-(\frac62)^2+2


\implies f(x)=(x-3)^2-3^2+2


\implies f(x)=(x-3)^2-9+2


\implies f(x)=(x-3)^2-7

User Nate Kimball
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories