Answer:
![\displaystyle r \approx 5.8 \ ft](https://img.qammunity.org/2022/formulas/mathematics/high-school/2weelvubb53a2slbpe8719tbh1spx08nld.png)
General Formulas and Concepts:
Symbols
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality
Geometry
Volume of a Sphere Formula:
![\displaystyle V = (4)/(3)\pi r^3](https://img.qammunity.org/2022/formulas/mathematics/high-school/frkhq887s2mq5bi8ae5bzflkcphrp5yck0.png)
Explanation:
Step 1: Define
Identify variables
Volume V = 797 ft³
Step 2: Solve for r
- Substitute in variables [Volume of a Sphere Formula]:
![\displaystyle 797 \ ft^3 = (4)/(3)\pi r^3](https://img.qammunity.org/2022/formulas/mathematics/high-school/u9ex5ajlkheemira58l4c46rb6wt78e7xt.png)
- [Division Property of Equality] Isolate r term:
![\displaystyle (2391)/(4 \pi) \ ft^3 =r^3](https://img.qammunity.org/2022/formulas/mathematics/high-school/zoro6ibhfex83drz5n77mcv4ufjwqv00nc.png)
- Rewrite:
![\displaystyle r^3 = (2391)/(4 \pi) \ ft^3](https://img.qammunity.org/2022/formulas/mathematics/high-school/pm6st2tdoutaw8t7bfvh653wp4jpjzfpgn.png)
- [Equality Property] Cube root both sides:
![\displaystyle r = \frac{4782^{(1)/(3)}}{2 \pi^{(1)/(3)}} \ ft](https://img.qammunity.org/2022/formulas/mathematics/high-school/rzoejofnwmdp2ivmsrrnjgoz2zfub78bz5.png)
- Evaluate:
![\displaystyle r = 5.75162 \ ft](https://img.qammunity.org/2022/formulas/mathematics/high-school/1o1w4fcz9r19qru8xynkqjn5o2b21fetlv.png)
- Round:
![\displaystyle r \approx 5.8 \ ft](https://img.qammunity.org/2022/formulas/mathematics/high-school/2weelvubb53a2slbpe8719tbh1spx08nld.png)