Answer:
d = 4.425 x 10⁻⁶ m = 4.425 μm
Step-by-step explanation:
The charge on plates can be given as:
![q = \sigma A=CV\\where,\\\\C = Capacitance\ of\ parallel\ plate\ capacitor = (\epsilon_oA)/(d)\\\\therefore,\\\\\sigma A=((\epsilon_oA)/(d))V\\\\d = ((\epsilon_o)/(\sigma))V](https://img.qammunity.org/2022/formulas/physics/high-school/1lq7bjxqbsbmcvx2tsu5uj7o6mrcklnhdr.png)
where,
d = spacing between plates = ?
ε₀ = Permitivity of free space = 8.85 x 10⁻¹² C²/Nm²
σ = surface charge density = (30 nC/cm²)(10⁻⁹ C/1 nC)(1 cm²/10⁻⁴ m²)
σ = 3 x 10⁻⁴ C/m²
V = Potential Difference = 150 V
Therefore,
![d = ((8.85\ x\ 10^(-12)\ C^2/Nm^2))/(3\ x\ 10^(-4)\ C/m^2)(150\ V)\\](https://img.qammunity.org/2022/formulas/physics/high-school/909rfigvxhvw190z5pm31hdnmsbsla2v8o.png)
d = 4.425 x 10⁻⁶ m = 4.425 μm