89.6k views
5 votes
Verify that each equation is an identity (1 - sin^(2)((x)/(2)))/(1+sin^(2)((x)/(2)))= (1+cosx)/(3-cosX)

1 Answer

5 votes

Answer:

Given that we have;


sin \left ((x)/(2) \right ) = \sqrt{(1 - cos (x))/(2) }

By the application of the law of indices and algebraic process of adding a and subtracting a fraction from a whole number, we have;


\therefore (\left ( 1 - sin^2 \left ((x)/(2) \right ) \right ))/(\left ( 1 + sin^2 \left ((x)/(2) \right ) \right )) =(\left ( (1 + cos (x))/(2) \right))/(\left ((3 - cos (x))/(2) \right ) ) =(\left ( 1 + cos (x)))/((3 - cos (x)))

Explanation:

An identity is a valid or true equation for all variable values

The given equation is presented as follows;


(\left ( 1 - sin^2 \left ((x)/(2) \right ) \right ))/(\left ( 1 + sin^2 \left ((x)/(2) \right ) \right )) =(\left ( 1 + cos (x)))/((3 - cos (x)))

From trigonometric identities, we have;


sin \left ((x)/(2) \right ) = \sqrt{(1 - cos (x))/(2) }


\therefore sin^2 \left ((x)/(2) \right ) = (1 - cos (x))/(2)


1 - sin^2 \left ((x)/(2) \right ) = 1 - (1 - cos (x))/(2) = (2 - (1 - cos (x)))/(2) = (1 + cos (x)))/(2)


1 + sin^2 \left ((x)/(2) \right ) = 1 + (1 - cos (x))/(2) = (2 + 1 - cos (x)))/(2) = (3 - cos (x)))/(2)


\therefore (\left ( 1 - sin^2 \left ((x)/(2) \right ) \right ))/(\left ( 1 + sin^2 \left ((x)/(2) \right ) \right )) =(\left ( (1 + cos (x))/(2) \right))/(\left ((3 - cos (x))/(2) \right ) ) =(\left ( 1 + cos (x)))/((3 - cos (x)))


\therefore (\left ( 1 - sin^2 \left ((x)/(2) \right ) \right ))/(\left ( 1 + sin^2 \left ((x)/(2) \right ) \right )) =(\left ( 1 + cos (x)))/((3 - cos (x)))

User Dspfnder
by
3.7k points