Answer:
![y= (x -4)^2 - 1](https://img.qammunity.org/2022/formulas/mathematics/high-school/a78jfrin11k15az3mwvosyyl9i993zycej.png)
![Vertex = (4,-1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/5ofnjebls6ba95hbw8e6y03wa5rywthut1.png)
Explanation:
Given
![f(x) = x^2 + 6x+13](https://img.qammunity.org/2022/formulas/mathematics/high-school/ci9t17xm0q2wksu5b35j060jj26aghl5s9.png)
Required
7 units left and 5 units down
First, we have: [7 units left]
The rule is:
![(x,y) \to (x-7,y)](https://img.qammunity.org/2022/formulas/mathematics/high-school/jpf3tebnq0etv8l65qjgid2hjuzozevcea.png)
So, we have:
![f(x) = (x - 7)^2 + 6(x -7)+13](https://img.qammunity.org/2022/formulas/mathematics/high-school/2uypz56x0uavxgijrd4o1nahjhlx0xi0qh.png)
Next, we have: [5 units down]
The rule is:
![(x,y) \to (x,y-5)](https://img.qammunity.org/2022/formulas/computers-and-technology/high-school/ocx31fzwnlqzjg1d5a2kg4zf18ny5y28oz.png)
So, we have:
![f'(x) = (x - 7)^2 + 6(x -7)+13 - 5](https://img.qammunity.org/2022/formulas/mathematics/high-school/we499hacss040ply44pv50rb2m3dur216r.png)
![f'(x) = (x - 7)^2 + 6(x -7)+8](https://img.qammunity.org/2022/formulas/mathematics/high-school/78r28k6r7ipvs3qisfwgbtasg68yknvr17.png)
Rewrite as:
![y = (x - 7)^2 + 6(x -7)+8](https://img.qammunity.org/2022/formulas/mathematics/high-school/7e899vpxi2vyrw2m3r2sji4lj2aynwapp4.png)
Expand
![y = x^2 - 14x + 49 + 6x -42+8](https://img.qammunity.org/2022/formulas/mathematics/high-school/ab04sbyd4oy3nawcas2q7oznibzp6b5ilh.png)
Collect like terms
![y = x^2 - 14x + 6x -42+8+ 49](https://img.qammunity.org/2022/formulas/mathematics/high-school/xvf4jebi4u85e0j4h1tsxp6egu5g7rh3ic.png)
![y = x^2 -8x +15](https://img.qammunity.org/2022/formulas/mathematics/high-school/c53x3y25mtebeo6h1r4eu2ly5j0yb8q6as.png)
To write in vertex form, we have
Subtract 15 from both sides
![y -15= x^2 -8x](https://img.qammunity.org/2022/formulas/mathematics/high-school/k5jpkxa1e8n8sumycds0zvfxluqnvjtvfh.png)
Divide (-8) by 2; Add the square to both sides
![y -15+ (-8/2)^2= x^2 -8x + (-8/2)^2](https://img.qammunity.org/2022/formulas/mathematics/high-school/hmicxbsg84odg5ygwc0fqx46gvrbek7sdu.png)
![y -15+ 16= x^2 -8x + 16](https://img.qammunity.org/2022/formulas/mathematics/high-school/rgo0nc3dmx7gcxnpzl4tjdb4nwemp8an7k.png)
![y +1= x^2 -8x + 16](https://img.qammunity.org/2022/formulas/mathematics/high-school/3bs4gvyxbnac8zud2tcsb7d04648zkny2y.png)
Expand
![y +1= x^2 -4x - 4x + 16](https://img.qammunity.org/2022/formulas/mathematics/high-school/zf0dt1siz931kcgpnc79k8dk3ysexpkw2i.png)
Factorize
![y +1= x(x -4) -4(x - 4)](https://img.qammunity.org/2022/formulas/mathematics/high-school/ro2n5e2ke71qaeug207inlc7kqcgs3ndrb.png)
Factor out x - 4
![y +1= (x -4)(x - 4)](https://img.qammunity.org/2022/formulas/mathematics/high-school/rbaui76y27v67a7epwy7b3onsfngiqnp3b.png)
Rewrite as:
![y +1= (x -4)^2](https://img.qammunity.org/2022/formulas/mathematics/high-school/plvh9252aw7ubjdthbz223mxn1gavosqqf.png)
Make y the subject
![y= (x -4)^2 - 1](https://img.qammunity.org/2022/formulas/mathematics/high-school/a78jfrin11k15az3mwvosyyl9i993zycej.png)
The vertex is:
![Vertex = (4,-1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/5ofnjebls6ba95hbw8e6y03wa5rywthut1.png)