197k views
1 vote
At 298 K, the rate constant for a reaction is 0.0346 s-1. What is the rate constant at 350K if the Ea = 50.2kJ/mol

User Cleg
by
8.6k points

1 Answer

6 votes

Answer:

0.702 /s

Step-by-step explanation:

Rate constant at
[298 \mathrm{~K}, \mathrm{~K}_(1)=3.46 * 10^(-2) \mathrm{~s}^(-1)

Rate constant at
350 \mathrm{~K}, \mathrm{~K}_(2)=?


T_(1)=298 \mathrm{~K}


T_(2)=350 \mathrm{~K}

Activation energy,
\mathrm{Ea}=50.2 * 10^(3) \mathrm{~J} / \mathrm{mol}

Use the following equation to calculate
K_(2)$ at $350 \mathrm{~K}

Use the following equation to calculate
K_(2)$ at $350 \mathrm{~K}


\ln \frac{\mathrm{K}_(2)}{\mathrm{~K}_(1)}=\frac{\mathrm{Ea}}{\mathrm{R}}\left[\frac{1}{\mathrm{~T}_(1)}-\frac{1}{\mathrm{~T}_(2)}\right]

Therefore,


\ln \left(\frac{K_(2)}{3.46 * 10^(-2) \mathrm{~s}^(-1)}\right) &=\frac{50.2 * 10^(3) \mathrm{~J} / \mathrm{mol}}{8.314 \mathrm{JK}^(-1) \mathrm{~mole}^(-1)}\left[\frac{1}{298 \mathrm{~K}}-\frac{1}{350 \mathrm{~K}}\right]


\ln \left(\frac{K_(2)}{3.46 * 10^(-2) \mathrm{~s}^(-1)}\right) &=\frac{50.2 * 10^(3) \mathrm{~J} / \mathrm{mol}}{8.314 \mathrm{JK}^(-1) \mathrm{~mole}^(-1)}\left[\frac{52 \mathrm{~K}}{298 \mathrm{~K} * 350 \mathrm{~K}}\right]


\frac{K_(2)}{3.46 * 10^(-2) \mathrm{~s}^(-1)} &=\mathrm{e}^(3.01)


\frac{K_(2)}{3.46 * 10^(-2) \mathrm{~s}^(-1)} &=20.3


K_(2) &=20.3 * 3.46 * 10^(-2) \mathrm{~s}^(-1)


&=0.702 \mathrm{~s}^(-1)

hence, the rate constant at
350 \mathrm{~K} is 0.702
\mathrm{~s}^(-1)

User Daf De Giraf
by
8.2k points