198k views
4 votes
The length of a rectangle flower bed is 5ft longer than its width. A sidewalk with a width of 3ft surrounds the bed. If the total area of the bed and sidewalk is 546ft^2, what are the dimensions of the flower bed ?

User Karlito
by
3.1k points

1 Answer

2 votes

Answer:


W=15ft


L=20ft

Explanation:

From the question we are told that:

Length of Bed
L=5+W

Width of sidewalk
W_s=3ft

Area of the bed and sidewalk
A_t= 546ft^2

Generally the equation for Area of the bed and sidewalk
A_t is mathematically given by


Area=L*B


A_t=((3+3)+L)*((3+3)+W)

Therefore


546=((3+3)+(5+W))*((3+3)+W)


0=((6+(5+W))*((6)+W)-546


(11+W)*(6+W)-546=0


W^2+17B-480=0

Solving the Quadratic Equation


W=15ft (Using only positive root)

Generally the Length L is mathematically given by


L=5+15


L=20ft

User Pranav
by
3.6k points