Answer:
Density = 3 x 10⁻⁵ kg/m³
Step-by-step explanation:
First, we will find the volume of the planet:
![V = (4)/(3)\pi r^3\ (radius\ of\ sphere)\\\\V = (4)/(3)\pi (8000\ m)^3\\\\V = 2.14\ x\ 10^(12)\ m^3](https://img.qammunity.org/2022/formulas/physics/high-school/wu9aki0fgnsawn1g4acoe7q71c32571hi8.png)
Now, we will use the expression for gravitational force to find the mass of the planet:
![g = (Gm)/(r^2)\\\\m = (gr^2)/(G)](https://img.qammunity.org/2022/formulas/physics/high-school/k7r3zgn3zp84t3rj3r5o4g5xl2leahlrh0.png)
where,
m = mass = ?
g = acceleration due to gravity = 6.67 x 10⁻¹¹ m/s²
G = Universal Gravitational Constant = 6.67 x 10⁻¹¹ Nm²/kg²
r = radius = 8000 m
Therefore,
![m = ((6.67\ x\ 10^(-11)\ m/s^2)(8000\ m)^2)/(6.67\ x\ 10^(-11)\ Nm^/kg^2)\\\\m = 6.4\ x\ 10^7\ kg](https://img.qammunity.org/2022/formulas/physics/high-school/1zdahl6vl1dq03z2ki6kkiqyq73azi7ltn.png)
Therefore, the density will be:
![Density = (m)/(V) = (6.4\ x\ 10^7\ kg)/(2.14\ x\ 10^(12)\ m^3)](https://img.qammunity.org/2022/formulas/physics/high-school/u6d6gj7gglg92b8syvj57303ky7mv92gq3.png)
Density = 3 x 10⁻⁵ kg/m³