205k views
3 votes
A function is given by f(x) =

\sqrt[4]{x}
Evaluate f'(16).​

User StarGeek
by
4.5k points

1 Answer

3 votes

Answer:


\displaystyle f'(16) = (1)/(32)

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Exponential Rule [Rewrite]:
    \displaystyle b^(-m) = (1)/(b^m)
  • Exponential Rule [Root Rewrite]:
    \displaystyle \sqrt[n]{x} = x^{(1)/(n)}

Calculus

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Explanation:

Step 1: Define


\displaystyle f(x) = \sqrt[4]{x}

f'(16) is x = 16 for the derivative f'(x)

Step 2: Differentiate

  1. [Function] Rewrite [Exponential Rule - Root Rewrite]:
    \displaystyle f(x) = x^{(1)/(4)}
  2. Basic Power Rule:
    \displaystyle f'(x) = (1)/(4)x^{(1)/(4) - 1}
  3. Simplify:
    \displaystyle f'(x) = (1)/(4)x^{(-3)/(4)}
  4. Rewrite [Exponential Rule - Rewrite]:
    \displaystyle f'(x) = \frac{1}{4x^{(3)/(4)}}

Step 3: Solve

  1. Substitute in x [Derivative]:
    \displaystyle f'(16) = \frac{1}{4(16)^{(3)/(4)}}
  2. Evaluate exponents:
    \displaystyle f'(16) = (1)/(4(8))
  3. Multiply:
    \displaystyle f'(16) = (1)/(32)

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e