171k views
3 votes
Find the distance between the two points rounding to the nearest tenth (if necessary).

(-6, 6) and (3, -6)

1 Answer

1 vote

Answer:


\displaystyle d = 15

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Coordinates (x, y)

Algebra II

  • Distance Formula:
    \displaystyle d = √((x_2-x_1)^2+(y_2-y_1)^2)

Explanation:

Step 1: Define

Point (-6, 6)

Point (3, -6)

Step 2: Identify

(-6, 6) → x₁ = -6, y₁ = 6

(3, -6) → x₂ = 3, y₂ = -6

Step 3: Find distance d

Simply plug in the 2 coordinates into the distance formula to find distance d

  1. Substitute in points [Distance Formula]:
    \displaystyle d = √((3--6)^2+(-6-6)^2)
  2. [√Radical] (Parenthesis) Subtract/Add:
    \displaystyle d = √((9)^2+(-12)^2)
  3. [√Radical] Evaluate exponents:
    \displaystyle d = √(81+144)
  4. [√Radical] Add:
    \displaystyle d = √(225)
  5. [√Radical] Evaluate:
    \displaystyle d = 15
User Kwebble
by
5.4k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.