156k views
2 votes
Tantheta+sintheta/tantheta-sintheta=sectheta+1/sectheta-1​

User Machaku
by
3.8k points

2 Answers

3 votes

Answer:

TO PROVE :-


  • (\tan \theta + \sin \theta)/(\tan \theta - \sin \theta) = (\sec \theta + 1)/(\sec \theta - 1)

SOLUTION :-

First of all , simplify L.H.S.


(\tan \theta + \sin \theta)/(\tan \theta - \sin \theta)

  • Use
    \tan \theta = (\sin \theta)/(\cos \theta) in place of tanθ.


=> ((\sin \theta)/(\cos \theta) + \sin \theta )/((\sin \theta)/(\cos \theta) - \sin \theta)

  • Take sinθ common from both numerator & denominator.


=> (\sin \theta ((1)/(\cos \theta) + 1) )/(\sin \theta ((1)/(\cos \theta)- 1) )

  • Cancel the sinθ from both numerator & denominator.


=> ((1)/(\cos \theta) +1)/((1)/(\cos \theta) -1)

  • Use
    \sec \theta = (1)/(\cos \theta)


=> (\sec \theta + 1)/(\sec \theta - 1)

∴ L.H.S. = R.H.S

User DexCurl
by
3.9k points
5 votes

Explanation:

sin(theta)÷costheta+sintheta/sintheta÷COStheta- sintheta

sintheta+sintheta×costheta/sintheta-sintheta-costheta

sintheta(1+Costheta)/sintheta(1-costheta)

1+1÷Sectheta/1-1÷Sectheta

sectheta+1÷sectheta/sectheta-1÷sectheta

sectheta+1/sectheta-1

User Leo Hendry
by
4.1k points