232k views
3 votes
What is the perimeter of parallelogram RSTU, rounded to the nearest whole number? ​

What is the perimeter of parallelogram RSTU, rounded to the nearest whole number? ​-example-1

1 Answer

1 vote

Given:

The vertices of the parallelogram RSTU are R(-4,4), S(2,6), T(6,2) and U(0,0).

To find:

The perimeter of parallelogram RSTU, rounded to the nearest whole number.

Solution:

Distance formula:


D=√((x_2-x_1)^2+(y_2-y_1)^2)

Using the distance formula, we get


RS=√((2-(-4))^2+(6-4)^2)


RS=√((6)^2+(2)^2)


RS=√(36+4)


RS=√(40)


RS=6.32

Similarly,


ST=√(\left(6-2\right)^2+\left(2-6\right)^2)


ST\approx 5.66


TU=√(\left(0-6\right)^2+\left(0-2\right)^2)


TU\approx 6.32


RU=√(\left(0-\left(-4\right)\right)^2+\left(0-4\right)^2)


RU\approx 5.66

Now, the perimeter of the parabola is:


P=RS+ST+TU+RU


P=6.32+5.66+6.32+5.66


P=23.96


P\approx 24

The perimeter of the parallelogram RSTU is 24 units.

Therefore, the correct option is C.

Note: Unit of perimeter cannot be in square.

User Thirumalvalavan
by
4.3k points