Given:
The figure of triangle ABC.
The area of the triangle ABC is D.
![m\angle B=\sin ^(-1)((m)/(n))](https://img.qammunity.org/2022/formulas/mathematics/high-school/7v5c3r1lzlq1vbubfyiwdn29u1lcgu1gzj.png)
To find:
The value of m and n in the given expression.
Solution:
Let h be the height of the triangle ABC.
Area of a triangle is:
![Area=(1)/(2)* base* h](https://img.qammunity.org/2022/formulas/mathematics/high-school/u3dif081x4bhsgduqag4fn54honq6axcco.png)
Where, b is the base and h is the height of the triangle.
![Area=(1)/(2)* a* h](https://img.qammunity.org/2022/formulas/mathematics/high-school/mmcfhxn4u1rhujpznnuoy127fghaykcwtq.png)
The area of the triangle ABC is D.
![D=(1)/(2)* a* h](https://img.qammunity.org/2022/formulas/mathematics/high-school/ivubvtzgpyvzi0y29z83c23dvqpbs6d5lq.png)
![2D=ah](https://img.qammunity.org/2022/formulas/mathematics/high-school/ke9a9cwb8xe6tjfq3z4lvtktkkpjcl6n8r.png)
...(i)
In a right angle triangle,
![\sin \theta =(Perpendicular)/(Hypotenuse)](https://img.qammunity.org/2022/formulas/mathematics/high-school/wr8sc7uh7l458dz7rrhwdfsqivf9usi32m.png)
![\sin B =(h)/(c)](https://img.qammunity.org/2022/formulas/mathematics/high-school/6zh4tdgc1zr9njie87jt1e6pj1ua3j36hv.png)
[Using (i)]
...(ii)
We have,
...(iii)
On comparing (ii) and (iii), we get
![m=2D](https://img.qammunity.org/2022/formulas/mathematics/high-school/v6qhh0zj9pxxybp42sxo3i8pj9q2k03k2k.png)
![n=ac](https://img.qammunity.org/2022/formulas/mathematics/high-school/revj4w4uo93qawwxc91ppbg1t49eo3yjh4.png)
Therefore, the required values are
.