Answer:
B. 3408π units³
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Geometry
Volume of a Cone Formula:

Explanation:
Step 1: Define
Radius r = 12
Height h = 71
Step 2: Find Volume
- Substitute in variables [Volume of a Cone Formula]:

- Evaluate exponents:

- Multiply:

- Multiply:
