Answer:
A. 112π units³
General Formulas and Concepts:
Symbols
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Geometry
Volume of a Cone Formula:
![\displaystyle V = (1)/(3) \pi r^2h](https://img.qammunity.org/2022/formulas/mathematics/college/kwvkk3vzegktdzc7kcfwyyhlwgubohlowk.png)
Explanation:
Step 1: Define
Radius r = 4
Height h = 21
Step 2: Find Volume
- Substitute in variables [Volume of a Cone Formula]:
![\displaystyle V = (1)/(3) \pi (4)^2(21)](https://img.qammunity.org/2022/formulas/mathematics/college/9umakhpv067k9gg60x7fq3magtowuzbm8a.png)
- Evaluate exponents:
![\displaystyle V = (1)/(3) \pi (16)(21)](https://img.qammunity.org/2022/formulas/mathematics/college/qtzknawcmkl62c5rkyfnujoe1gxdwvq8kn.png)
- Multiply:
![\displaystyle V = (16 \pi)/(3)(21)](https://img.qammunity.org/2022/formulas/mathematics/college/k77523a9h3d50cs3yvwq0lpp3ffthfs3b1.png)
- Multiply:
![\displaystyle V = 16 \pi \cdot 7](https://img.qammunity.org/2022/formulas/mathematics/college/1ui4psi1yjjv3be3syy9fvpfcx1yieyj2o.png)
- Multiply:
![\displaystyle V = 112 \pi](https://img.qammunity.org/2022/formulas/mathematics/college/ku6xh4twtjv7mfp15rqnlwvt1r6tx49i3b.png)