Answer:
A.
![x = \frac{7√(6){3}]()
Explanation:
Reference angle = 60°
Opposite =
![(7√(2))/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/i1knyhvxj2hyocvye8nhupc2i3d14ryrn7.png)
Hypotenuse = x
Adjacent = y
✔️To find x, apply the trigonometric function SOH:
Sin 60° = Opp/Hyp
![sin 60° = ((7√(2))/(2))/(x)](https://img.qammunity.org/2022/formulas/mathematics/college/lry8n3dqnok51469srrnqs5q2vpg7b822n.png)
(sin 60 = √3/2)
![(√(3))/(2) = (7√(2))/(2)*(1)/(x)](https://img.qammunity.org/2022/formulas/mathematics/college/27fwjbpo5txdvw09629k4glw99unx1wap1.png)
![(√(3))/(2) = (7√(2))/(2x)](https://img.qammunity.org/2022/formulas/mathematics/college/jkv2rb0v60hlwq8f1vutu8qp2mbnqj7u6h.png)
Cross multiply
![√(3)*2x = 7√(2)*2](https://img.qammunity.org/2022/formulas/mathematics/college/z63gl8dtgppf3lmmgvnyb1vruga5akvwdu.png)
![2√(3)*x = 14√(2)](https://img.qammunity.org/2022/formulas/mathematics/college/6kppobjnji1wfhsr5gwetkelptblbfpp90.png)
Divide both sides by 2
![√(3)*x = 7√(2)](https://img.qammunity.org/2022/formulas/mathematics/college/9gky9ufvvbnnxyz8d6uhk1c65yw02l2evh.png)
Divide both sides by √3
![x = (7√(2))/(√(3))](https://img.qammunity.org/2022/formulas/mathematics/college/twrdh4zfgoa0lxlo9xrjo019zxmr1391sc.png)
Rationalize
![x = (7√(2)*√(3))/(√(3)*√(3))](https://img.qammunity.org/2022/formulas/mathematics/college/691i8bvnisziigp06ua4wmrhzo8iza3a09.png)
![x = \frac{7√(6){3}]()
✔️To find y, apply the trigonometric function TOA:
Tan 60° = Opp/Adjacent
![Tan 60° = ((7√(2))/(2))/(y)](https://img.qammunity.org/2022/formulas/mathematics/college/v18vho9x6wjquggzk9wmjqxrgh2ye4a8nx.png)
(tan 60 = √3)
Cross multiply
Divide both sides by √3
Rationalize