Answer:
Radius of Convergence: 2
Interval of Convergence: [-2, 2]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality
Algebra I
- Exponential Rule [Multiplying]:
![\displaystyle b^m \cdot b^n = b^(m + n)](https://img.qammunity.org/2022/formulas/mathematics/high-school/4u771vrdjil1gzz1o9676pzxb1fcmv554o.png)
- Exponential Rule [Dividing]:
![\displaystyle (b^m)/(b^n) = b^(m - n)](https://img.qammunity.org/2022/formulas/mathematics/college/a7zme4ecsllo8lag8qcb9d46bmjdj3awjp.png)
Calculus
Series Convergence Tests
- P-Series:
![\displaystyle \sum \limit_(n = 1)^\infty (1)/(n^p)](https://img.qammunity.org/2022/formulas/mathematics/college/4j5grn1yz9hnft0tisco4s88ayynued8id.png)
- Direct Comparison Test (DCT)
- Alternating Series Test (AST)
- Ratio Test:
![\displaystyle \lim_(n \to \infty) \bigg| (a_(n + 1))/(a_n) \bigg|](https://img.qammunity.org/2022/formulas/mathematics/college/nkp1ee3u410kfja8li772vmnybeeh12slt.png)
Radius of Convergence (ROC)
Interval of Convergence (IOC)
Explanation:
Step 1: Define
![\displaystyle \sum \limit_(n = 1)^\infty (x^n)/(2^n(n + 1)^2)](https://img.qammunity.org/2022/formulas/mathematics/college/dt3g05vmwl1ky6szr5l4h163hkjgmsodgu.png)
Step 2: Find ROC
Apply Ratio Test
- [Series] Set up [Ratio Test]:
![\displaystyle \lim_(n \to \infty) \bigg|(x^(n + 1))/(2^(n + 1)(n + 2)^2) \cdot (2^n(n + 1)^2)/(x^n) \bigg|](https://img.qammunity.org/2022/formulas/mathematics/college/p953u908bl2lrgj035pvdnsv13wu9b45ih.png)
- [Ratio Test] Rewrite exponentials [Exponential Rule - Multiplying]:
![\displaystyle \lim_(n \to \infty) \bigg|(x^n \cdot x)/(2^n \cdot 2(n + 2)^2) \cdot (2^n(n + 1)^2)/(x^n) \bigg|](https://img.qammunity.org/2022/formulas/mathematics/college/es95cefjq2t5kjxrezm01y7l7y8juzsn1b.png)
- [Ratio Test] Simplify:
![\displaystyle \lim_(n \to \infty) \bigg| (x)/(2(n + 2)^2) \cdot (n + 1)^2 \bigg|](https://img.qammunity.org/2022/formulas/mathematics/college/8uz2ad1hy6g6zhv9wepa3thn3xrybr5r9f.png)
- [Ratio Test] Multiply:
![\displaystyle \lim_(n \to \infty) \bigg| (x(n + 1)^2)/(2(n + 2)^2) \bigg|](https://img.qammunity.org/2022/formulas/mathematics/college/2nn0hhpl7ieglfc2h3oql1v7cx6j38k0bl.png)
- [Ratio Test] Evaluate limit:
![\displaystyle \bigg| (x)/(2) \bigg| < 1](https://img.qammunity.org/2022/formulas/mathematics/college/3ih46c9dneaf5iu0pgwiawizoadsr3k11j.png)
- [Ratio Test] Isolate x:
![\displaystyle |x| < 2](https://img.qammunity.org/2022/formulas/mathematics/college/1u18jqjqu7iiamq8kajlphn1tnc3gqnwwt.png)
Our ROC is 2.
Step 3: Find IOC
Test endpoints
- [ROC] Find interval bound:
![\displaystyle -2 < x < 2](https://img.qammunity.org/2022/formulas/mathematics/college/ivht9jchv68n7eewfoq33bdyzsne4cimjy.png)
x = -2
- Substitute in x [Series]:
![\displaystyle \sum \limit_(n = 1)^\infty ((-2)^n)/(2^n(n + 1)^2)](https://img.qammunity.org/2022/formulas/mathematics/college/u66f4bly1m0lzgcfxmcg6uc7rf9p2chyyi.png)
- [Series] Rewrite [Exponential Rules - Multiplying]:
![\displaystyle \sum \limit_(n = 1)^\infty ((-1)^n2^n)/(2^n(n + 1)^2)](https://img.qammunity.org/2022/formulas/mathematics/college/3tnl9szj2ejk912c6bji0kd1szanc7jz7l.png)
- [Series] Simplify:
![\displaystyle \sum \limit_(n = 1)^\infty ((-1)^n)/((n + 1)^2)](https://img.qammunity.org/2022/formulas/mathematics/college/o9byh0ep2dnianjg46mpy2bbunqyrtve58.png)
Test convergence of modified series: Alternating Series Test
- [AST] Condition 1 [Limit Test]:
![\displaystyle \lim_(n \to \infty) (1)/((n + 1)^2) = 0 \ \checkmark](https://img.qammunity.org/2022/formulas/mathematics/college/j5ob4f6iovb8v2mzboz97zy1reanyi4hmc.png)
- [AST] Condition 2 [aₙ vs bₙ comparison]:
![\displaystyle (1)/((n + 2)^2) \le (1)/((n + 1)^2) \ \checkmark](https://img.qammunity.org/2022/formulas/mathematics/college/s2mn763y02uw29e2w3mdlw8l9ahrx3e4zk.png)
At x = -2, the series is convergent.
∴ Current IOC is -2 ≤ x < 2 or [-2, 2); 2 undetermined
x = 2
- Substitute in x [Series]:
![\displaystyle \sum \limit_(n = 1)^\infty (2^n)/(2^n(n + 1)^2)](https://img.qammunity.org/2022/formulas/mathematics/college/cn9z2hpbghj6zn2rm4ezcf3vxq5xr7cqjs.png)
- [Series] Simplify:
![\displaystyle \sum \limit_(n = 1)^\infty (1)/((n + 1)^2)](https://img.qammunity.org/2022/formulas/mathematics/college/28g4nk3wjz0trb5sri3qvr1kf4ovw66k5h.png)
Test convergence of modified series: Direct Comparison Test
- [DCT] Condition 1 [Define comparing series]:
![\displaystyle \sum \limit_(n = 1)^\infty (1)/(n^2)](https://img.qammunity.org/2022/formulas/mathematics/college/rbkjcvj2g9bircq7v93mv3rn7so04nl4zk.png)
- [DCT] Condition 1 [Test convergence of comparing series]:
![\displaystyle p = 2 > 1, \ \sum \limit_(n = 1)^\infty (1)/(n^2) \ \text{convergent by p-series}](https://img.qammunity.org/2022/formulas/mathematics/college/eaatelyxyu3p48rkjbwpakexm81ucrn5j2.png)
- [DCT] Condition 2 [aₙ vs bₙ comparison]:
![\displaystyle (1)/((n + 1)^2) \le (1)/(n^2) \ \checkmark](https://img.qammunity.org/2022/formulas/mathematics/college/8q3y5eund1ace7o3tlbzkpnwf5yqy7seu0.png)
At x = 2, the series is convergent.
∴ IOC for
is -2 ≤ x ≤ 2 or [-2, 2]
Topic: AP Calculus AB/BC (Calculus I/II)
Unit: Taylor Polynomials and Approximations - Power Series (BC Only)
Book: College Calculus 10e