41.8k views
5 votes
Find the radius of convergence and the interval of convergence.


\displaystyle \sum \limit_(n=1)^\infty \frac{x^\text{n}}{2^\text{n}(n+1)^2}

1 Answer

6 votes

Answer:

Radius of Convergence: 2

Interval of Convergence: [-2, 2]

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

Algebra I

  • Exponential Rule [Multiplying]:
    \displaystyle b^m \cdot b^n = b^(m + n)
  • Exponential Rule [Dividing]:
    \displaystyle (b^m)/(b^n) = b^(m - n)

Calculus

Series Convergence Tests

  • P-Series:
    \displaystyle \sum \limit_(n = 1)^\infty (1)/(n^p)
  • Direct Comparison Test (DCT)
  • Alternating Series Test (AST)
  • Ratio Test:
    \displaystyle \lim_(n \to \infty) \bigg| (a_(n + 1))/(a_n) \bigg|

Radius of Convergence (ROC)

  • Ratio Test
  • Interval bound

Interval of Convergence (IOC)

  • Testing endpoints

Explanation:

Step 1: Define


\displaystyle \sum \limit_(n = 1)^\infty (x^n)/(2^n(n + 1)^2)

Step 2: Find ROC

Apply Ratio Test

  1. [Series] Set up [Ratio Test]:
    \displaystyle \lim_(n \to \infty) \bigg|(x^(n + 1))/(2^(n + 1)(n + 2)^2) \cdot (2^n(n + 1)^2)/(x^n) \bigg|
  2. [Ratio Test] Rewrite exponentials [Exponential Rule - Multiplying]:
    \displaystyle \lim_(n \to \infty) \bigg|(x^n \cdot x)/(2^n \cdot 2(n + 2)^2) \cdot (2^n(n + 1)^2)/(x^n) \bigg|
  3. [Ratio Test] Simplify:
    \displaystyle \lim_(n \to \infty) \bigg| (x)/(2(n + 2)^2) \cdot (n + 1)^2 \bigg|
  4. [Ratio Test] Multiply:
    \displaystyle \lim_(n \to \infty) \bigg| (x(n + 1)^2)/(2(n + 2)^2) \bigg|
  5. [Ratio Test] Evaluate limit:
    \displaystyle \bigg| (x)/(2) \bigg| < 1
  6. [Ratio Test] Isolate x:
    \displaystyle |x| < 2

Our ROC is 2.

Step 3: Find IOC

Test endpoints

  1. [ROC] Find interval bound:
    \displaystyle -2 < x < 2

x = -2

  1. Substitute in x [Series]:
    \displaystyle \sum \limit_(n = 1)^\infty ((-2)^n)/(2^n(n + 1)^2)
  2. [Series] Rewrite [Exponential Rules - Multiplying]:
    \displaystyle \sum \limit_(n = 1)^\infty ((-1)^n2^n)/(2^n(n + 1)^2)
  3. [Series] Simplify:
    \displaystyle \sum \limit_(n = 1)^\infty ((-1)^n)/((n + 1)^2)

Test convergence of modified series: Alternating Series Test

  1. [AST] Condition 1 [Limit Test]:
    \displaystyle \lim_(n \to \infty) (1)/((n + 1)^2) = 0 \ \checkmark
  2. [AST] Condition 2 [aₙ vs bₙ comparison]:
    \displaystyle (1)/((n + 2)^2) \le (1)/((n + 1)^2) \ \checkmark

At x = -2, the series is convergent.

∴ Current IOC is -2 ≤ x < 2 or [-2, 2); 2 undetermined

x = 2

  1. Substitute in x [Series]:
    \displaystyle \sum \limit_(n = 1)^\infty (2^n)/(2^n(n + 1)^2)
  2. [Series] Simplify:
    \displaystyle \sum \limit_(n = 1)^\infty (1)/((n + 1)^2)

Test convergence of modified series: Direct Comparison Test

  1. [DCT] Condition 1 [Define comparing series]:
    \displaystyle \sum \limit_(n = 1)^\infty (1)/(n^2)
  2. [DCT] Condition 1 [Test convergence of comparing series]:
    \displaystyle p = 2 > 1, \ \sum \limit_(n = 1)^\infty (1)/(n^2) \ \text{convergent by p-series}
  3. [DCT] Condition 2 [aₙ vs bₙ comparison]:
    \displaystyle (1)/((n + 1)^2) \le (1)/(n^2) \ \checkmark

At x = 2, the series is convergent.

∴ IOC for
\displaystyle \sum \limit_(n = 1)^\infty (x^n)/(2^n(n + 1)^2) is -2 ≤ x ≤ 2 or [-2, 2]

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Taylor Polynomials and Approximations - Power Series (BC Only)

Book: College Calculus 10e

User John Gallagher
by
8.3k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories