41.8k views
5 votes
Find the radius of convergence and the interval of convergence.


\displaystyle \sum \limit_(n=1)^\infty \frac{x^\text{n}}{2^\text{n}(n+1)^2}

1 Answer

6 votes

Answer:

Radius of Convergence: 2

Interval of Convergence: [-2, 2]

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

Algebra I

  • Exponential Rule [Multiplying]:
    \displaystyle b^m \cdot b^n = b^(m + n)
  • Exponential Rule [Dividing]:
    \displaystyle (b^m)/(b^n) = b^(m - n)

Calculus

Series Convergence Tests

  • P-Series:
    \displaystyle \sum \limit_(n = 1)^\infty (1)/(n^p)
  • Direct Comparison Test (DCT)
  • Alternating Series Test (AST)
  • Ratio Test:
    \displaystyle \lim_(n \to \infty) \bigg| (a_(n + 1))/(a_n) \bigg|

Radius of Convergence (ROC)

  • Ratio Test
  • Interval bound

Interval of Convergence (IOC)

  • Testing endpoints

Explanation:

Step 1: Define


\displaystyle \sum \limit_(n = 1)^\infty (x^n)/(2^n(n + 1)^2)

Step 2: Find ROC

Apply Ratio Test

  1. [Series] Set up [Ratio Test]:
    \displaystyle \lim_(n \to \infty) \bigg|(x^(n + 1))/(2^(n + 1)(n + 2)^2) \cdot (2^n(n + 1)^2)/(x^n) \bigg|
  2. [Ratio Test] Rewrite exponentials [Exponential Rule - Multiplying]:
    \displaystyle \lim_(n \to \infty) \bigg|(x^n \cdot x)/(2^n \cdot 2(n + 2)^2) \cdot (2^n(n + 1)^2)/(x^n) \bigg|
  3. [Ratio Test] Simplify:
    \displaystyle \lim_(n \to \infty) \bigg| (x)/(2(n + 2)^2) \cdot (n + 1)^2 \bigg|
  4. [Ratio Test] Multiply:
    \displaystyle \lim_(n \to \infty) \bigg| (x(n + 1)^2)/(2(n + 2)^2) \bigg|
  5. [Ratio Test] Evaluate limit:
    \displaystyle \bigg| (x)/(2) \bigg| < 1
  6. [Ratio Test] Isolate x:
    \displaystyle |x| < 2

Our ROC is 2.

Step 3: Find IOC

Test endpoints

  1. [ROC] Find interval bound:
    \displaystyle -2 < x < 2

x = -2

  1. Substitute in x [Series]:
    \displaystyle \sum \limit_(n = 1)^\infty ((-2)^n)/(2^n(n + 1)^2)
  2. [Series] Rewrite [Exponential Rules - Multiplying]:
    \displaystyle \sum \limit_(n = 1)^\infty ((-1)^n2^n)/(2^n(n + 1)^2)
  3. [Series] Simplify:
    \displaystyle \sum \limit_(n = 1)^\infty ((-1)^n)/((n + 1)^2)

Test convergence of modified series: Alternating Series Test

  1. [AST] Condition 1 [Limit Test]:
    \displaystyle \lim_(n \to \infty) (1)/((n + 1)^2) = 0 \ \checkmark
  2. [AST] Condition 2 [aₙ vs bₙ comparison]:
    \displaystyle (1)/((n + 2)^2) \le (1)/((n + 1)^2) \ \checkmark

At x = -2, the series is convergent.

∴ Current IOC is -2 ≤ x < 2 or [-2, 2); 2 undetermined

x = 2

  1. Substitute in x [Series]:
    \displaystyle \sum \limit_(n = 1)^\infty (2^n)/(2^n(n + 1)^2)
  2. [Series] Simplify:
    \displaystyle \sum \limit_(n = 1)^\infty (1)/((n + 1)^2)

Test convergence of modified series: Direct Comparison Test

  1. [DCT] Condition 1 [Define comparing series]:
    \displaystyle \sum \limit_(n = 1)^\infty (1)/(n^2)
  2. [DCT] Condition 1 [Test convergence of comparing series]:
    \displaystyle p = 2 > 1, \ \sum \limit_(n = 1)^\infty (1)/(n^2) \ \text{convergent by p-series}
  3. [DCT] Condition 2 [aₙ vs bₙ comparison]:
    \displaystyle (1)/((n + 1)^2) \le (1)/(n^2) \ \checkmark

At x = 2, the series is convergent.

∴ IOC for
\displaystyle \sum \limit_(n = 1)^\infty (x^n)/(2^n(n + 1)^2) is -2 ≤ x ≤ 2 or [-2, 2]

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Taylor Polynomials and Approximations - Power Series (BC Only)

Book: College Calculus 10e

User John Gallagher
by
5.3k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.