Answer:
![y = (1)/(2) x - 3](https://img.qammunity.org/2022/formulas/mathematics/high-school/kmzrh5yrkixhhn78k8d5kea9q0fuxcsk5v.png)
Explanation:
The equation of a line can be written in the form of y=mx +c, where m is the gradient and c is the y-intercept.
![\boxed{gradient = (y1 - y2)/(x1 - x2) }](https://img.qammunity.org/2022/formulas/mathematics/high-school/4tgd1bkg2htp1vsl8cgtlumuyuvia3o4s4.png)
Using the gradient formula above,
gradient of line
![= ( - 1 - ( - 7))/(4 - ( - 8))](https://img.qammunity.org/2022/formulas/mathematics/college/dwkfwxlu6jh71evkg5o9ur4zpkoie7xxig.png)
![= ( - 1 + 7)/(4 + 8)](https://img.qammunity.org/2022/formulas/mathematics/college/8qqebjxcfp7a5hbjbk8tpzl1ziq1lka1hq.png)
![= (6)/(12)](https://img.qammunity.org/2022/formulas/mathematics/high-school/aqchu2bd83z1ya9e3vlv2ktfgflglaeg5z.png)
![= (1)/(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/11zldipu6rgplutea9qh9soqqjm4xlghpr.png)
Substitute m= ½ into the equation:
y= ½x +c
To find the value of c, substitute a pair of coordinates.
When x= 4, y= -1,
![- 1 = (1)/(2) (4) + c](https://img.qammunity.org/2022/formulas/mathematics/college/3wo6m328weipnrvsw7gqbupqhv6sgzv1qy.png)
-1= 2 +c
c= -1 -2 (-2 on both sides)
c= -3
∴ The equation of the line is y= ½x -3.