Answer:
A
Explanation:
We are given the function:
![\displaystyle f(x) = \left\{ \begin{array}{ll} 2\cos(\pi x) \text{ for } x \leq -1 \\ \\ \displaystyle (2)/(\cos(\pi x))\text{ for } x > -1 \end{array} \right.](https://img.qammunity.org/2022/formulas/mathematics/college/ahjn8s4mjc3snzas38uasblbzhfdlqqrwj.png)
And we want to find:
![\displaystyle \lim_(x\to -1)f(x)](https://img.qammunity.org/2022/formulas/mathematics/college/43d72tqdg4ifgdje7ct0qv2adxpi3h4v2r.png)
So, we need to determine whether or not the limit exists. In other words, we will find the two one-sided limits.
Left-Hand Limit:
![\displaystyle \lim_(x\to-1^-)f(x)](https://img.qammunity.org/2022/formulas/mathematics/college/bc6rr5ysec9qf9qnrytrgkb2zwfu4ythmf.png)
Since we are approaching from the left, we will use the first equation:
![\displaystyle =\lim_(x\to -1^-)2\cos(\pi x)](https://img.qammunity.org/2022/formulas/mathematics/college/whmthv0zr7sh9cfp1dtl9vf1e5bcycrcp5.png)
By direct substitution:
![=2\cos(\pi (-1))=2\cos(-\pi)=2(-1)=-2](https://img.qammunity.org/2022/formulas/mathematics/college/x5lajwjjxyk2khc6c2okf9v0el5v8qqz4c.png)
Right-Hand Limit:
![\displaystyle \lim_(x\to -1^+)f(x)](https://img.qammunity.org/2022/formulas/mathematics/college/bt5wfdbennt4pq39r5u05u70zyd1yj87c6.png)
Since we are approaching from the right, we will use the second equation:
![=\displaystyle \lim_(x\to -1^+)(2)/(\cos(\pi x))](https://img.qammunity.org/2022/formulas/mathematics/college/bzjunqfkv6pwnv7fy2o6pydxleaa1ywvyj.png)
Direct substitution:
![\displaystyle =(2)/(\cos(\pi (-1)))=(2)/(\cos(-\pi))=(2)/((-1))=-2](https://img.qammunity.org/2022/formulas/mathematics/college/fqtp2jawwig099lrg1895f9ub21gtga4uh.png)
So, we can see that:
![\displaystyle \displaystyle \lim_(x\to-1^-)f(x)=\displaystyle \lim_(x\to -1^+)f(x) =-2](https://img.qammunity.org/2022/formulas/mathematics/college/x9lnlhlml7s9wwpz6r7li3mmdyiayjy8a7.png)
Since both the left- and right-hand limits exist and equal the same thing, we can conclude that:
![\displaystyle \lim_(x \to -1)f(x)=-2](https://img.qammunity.org/2022/formulas/mathematics/college/bhbrygtz0zm8z774kupkg21axl6z9mddjw.png)
Our answer is A.