Answer:
![\large\boxed{\sf 3x - 5y +10=0}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ybbis0jvs93c25h36bcg0tvgcoe14zlo9g.png)
Explanation:
A equation is given to us and we need to find out the equation of the line which is perpendicular to the given line and passes through (-20,-10). The given line is ,
![\longrightarrow 5x + 3y = 30 \\](https://img.qammunity.org/2023/formulas/mathematics/high-school/w03lymmwvhdotmucvhd7npvctn6w55gwro.png)
Convert this into slope intercept form of the line , which is y = mx + c.
![\longrightarrow 3y = -5x +30 \\](https://img.qammunity.org/2023/formulas/mathematics/high-school/fexjvq8ou3xpngnwl7lv15e086ri7hs2sm.png)
Divide both sides by 3,
![\longrightarrow y =(-5)/(3)x+(30)/(3)\\](https://img.qammunity.org/2023/formulas/mathematics/high-school/tuhopchr1ranaafq5dmu7cnyj7trtmrnnm.png)
Simplify ,
![\longrightarrow y=-(5)/(3)x + 10 \\](https://img.qammunity.org/2023/formulas/mathematics/high-school/uzali0dhfna0208g3ljz2kgss5hyneuvr3.png)
On comparing it to slope intercept form, we have ;
![\longrightarrow m= (-5)/(3) \\](https://img.qammunity.org/2023/formulas/mathematics/high-school/85d3c2pwvndogd6q5168qgem8ohdjhhq5a.png)
Now as we know that the product of slopes of two perpendicular lines is -1 . Therefore the slope of the perpendicular line will be negative reciprocal of the slope of first line. As ,
![\longrightarrow m_(\perp)=-\bigg((-3)/(5)\bigg) = (3)/(5) \\](https://img.qammunity.org/2023/formulas/mathematics/high-school/mncyoo8d2gy65xyty7io180izhg7ryv28k.png)
Now we may use the point slope form of the line which is ,
![\longrightarrow y - y_1 = m(x-x_1) \\](https://img.qammunity.org/2023/formulas/mathematics/high-school/v8vz8kcjgqn2dgnq6btgsdj8sor1s22dl4.png)
Substitute the respective values ,
![\longrightarrow y -(-10) = (3)/(5)\{ x -(-20)\}\\](https://img.qammunity.org/2023/formulas/mathematics/high-school/rlmfcg92y92on7zm3updakei6gdkgl5bt3.png)
Simplify the brackets ,
![\longrightarrow y +10 =(3)/(5)(x+20) \\](https://img.qammunity.org/2023/formulas/mathematics/high-school/4cq67slwyrhuiawirm32p4y4ljtu7zdp3t.png)
Cross multiply ,
![\longrightarrow5( y +10)= 3(x+20)\\](https://img.qammunity.org/2023/formulas/mathematics/high-school/w7rlnsfry30dgflhdoossznhtnnktlqh4k.png)
Distribute ,
![\longrightarrow 5y +50 = 3x +60\\](https://img.qammunity.org/2023/formulas/mathematics/high-school/y2mt5947s0r0kghzxukg5laod1ej972vfh.png)
Subtract (5y +50) to both sides ,
![\longrightarrow 3x + 60 -5y -50=0 \\](https://img.qammunity.org/2023/formulas/mathematics/high-school/h81h3kvtujx4b2kbt6wq0jdie8fsb5b0pf.png)
Simplify ,
![\longrightarrow \underline{\underline{ 3x -5y +10=0}} \\](https://img.qammunity.org/2023/formulas/mathematics/high-school/df0k89qgt8ieb9dx8d2uos1x4e7wfk4awk.png)