Answer:
16.97
Explanation:
the geometric mean value of a set of n numbers is the nth root of the product of all n numbers.
so, here this means
![gm = \sqrt[6]{3 * 6 * 12 * 24 * 48 * 96}](https://img.qammunity.org/2022/formulas/mathematics/high-school/aantlkh4ci2klbg1vldujw19onjy27ekc2.png)
this would be 16.97
but careful, the problem only asks for the gm between 6 and 48 of the sequence.
so, we actually only consider the subset 6, 12, 24, 48.
therefore
![gm = \sqrt[4]{6 * 12 * 24 * 48}](https://img.qammunity.org/2022/formulas/mathematics/high-school/n2y7mce6p9td16uuzgb20wmvqcv356bvrh.png)
this is also
![gm = \sqrt[4]{3 * 2 * 3 * 2 * 2 * 3 * 2 * 2 * 2 * 3 * 2 * 2 * 2 * 2}](https://img.qammunity.org/2022/formulas/mathematics/high-school/3qetme72pfz76o7l12v566ufw3btft61kr.png)
![= \sqrt[4]{ {3}^(4) * {2}^(10) }](https://img.qammunity.org/2022/formulas/mathematics/high-school/wm3itrjx3bkwddjm2om903nnjajz3haqzr.png)
![= \sqrt[4]{ {3}^(4) * {2}^(4) * {2}^(4) * {2}^(2) }](https://img.qammunity.org/2022/formulas/mathematics/high-school/yciskr70ii2zajp8lmwnhqmj6royk68zpj.png)
![= 3 * 2 * 2 * \sqrt[4]{ {2}^(2) }](https://img.qammunity.org/2022/formulas/mathematics/high-school/p3vajv4rpp2gk8pk76rlozep0g4cvypdc5.png)

so, we could specify the result as that simple expression
or calculate it
gm = 16.97
hey, the result is the same as for the complete sequence.
coincidence ? no, it is not. but that is a subject for a different question.