Answer:
![\Large\boxed{\sf x = 19.2}](https://img.qammunity.org/2023/formulas/mathematics/college/5hla60x7a7xpika05n8f5o5swvcbvlg4kh.png)
Explanation:
Here a right angled triangle is given to us and we need to find out the value of x . The measure of one of the sides is 24 and one of the acute angle is 53° .
- Here 24 is hypotenuse of the triangle and x is the perpendicular .
So here we may use the ratio of sine as ,
![\sf\qquad\longrightarrow sin\theta =(p)/(h) \\\\](https://img.qammunity.org/2023/formulas/mathematics/college/pog6gp75m376zjmq8jmg9to6pm25wgaeso.png)
• On substituting the respective values ,
![\sf\qquad\longrightarrow sin53^\circ =(x)/(24)\\\\](https://img.qammunity.org/2023/formulas/mathematics/college/mvj3dehznbcikj007a1zueeu1ibopesewx.png)
Substitute the value of sin 53° = 4/5 ,
![\sf\qquad\longrightarrow (4)/(5)=(x)/(24) \\\\](https://img.qammunity.org/2023/formulas/mathematics/college/g1ip264fcib6opefk1sy1g4m8rmyzjorkp.png)
Cross multiply ,
![\sf\qquad\longrightarrow x =(24*4)/(5) \\\\](https://img.qammunity.org/2023/formulas/mathematics/college/8kidhgkonw7n3611ty23bzokcuyglxbm49.png)
Simplify,
![\sf\qquad\longrightarrow \frak{\pink{x =19.2}} \\\\](https://img.qammunity.org/2023/formulas/mathematics/college/2lev55tgrj5okfa0qffhfwj4m4hy7snnmw.png)
![\rule{200}4](https://img.qammunity.org/2023/formulas/physics/high-school/o3h1hh7lkhtu2fyo2fq1563wudp0nzumxm.png)