31.2k views
2 votes
1) Solve for Side A.

2) Solve for Angle B.

1) Solve for Side A. 2) Solve for Angle B.-example-1

2 Answers

4 votes

___________________________________

To find
\tt{\overline{A}}

Given that:


\quad\quad\quad\quad\tt{ \angle{A = 115° }}

Using cosine rule:


\tt{\overline{A}²=b²+c²-2bc \cos( \angle{a}) }


\tt{\overline{A}²=(30)²+(20)²-2(30)(20) \cos( \angle{115°}) }


\tt{\overline{A}²=900+400-2(600) \cos( \angle{115°}) }


\tt{\overline{A}²=1300-1200 \cos( \angle{115°}) }


\tt{\overline{A} ²=1807.1419}


\tt{\overline{A}= √( 1807.1419)}


\pink {\boxed{ \tt{ \overline{A}=42.51}}}

Now, to find
\tt{ \angle{B}}


\tt{ cos\;B = \frac{ {a}^(2) + {c}^(2) - {b}^(2) }{2ac} }


\tt{ cos\:B = \frac{ {42.51}^(2) + {20}^(2) - {30}^(2) }{2(42.51)(20)} }


\tt{ cos\:B = 0.7687}


\tt{ \angle{B} = { \cos}^( - 1) (0.7687)}


\pink{\boxed{\tt{ \angle{B} = {39.46°}}}}

___________________________________

#CarryOnLearning

✍︎ C.Rose❀

1) Solve for Side A. 2) Solve for Angle B.-example-1
User Marcel Blanck
by
8.3k points
4 votes

Answer:

solution given;

let

AB=a

AC=b=30ft

AB=c=20ft

<A=115°

By using Cosine rule.

a²=b²+c²-2bc cos angle

a²=30²+20²-2*30*20 Cos 115°

a²=1807.1419

a=√[1807.1419]

a=42.51

Side A is 42.51ft.

Again

Cos B=
(a²+c²-b²)/(2ac)

Cos B=
(42.51²+20²-30²)/(2*42.51*20)

Cos B=0.7687

<B=Cos -¹(0.7687)

<B=39.46°

Angle B is 39.46

User Dave Greilach
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories