31.1k views
2 votes
1) Solve for Side A.

2) Solve for Angle B.

1) Solve for Side A. 2) Solve for Angle B.-example-1

2 Answers

4 votes

___________________________________

To find
\tt{\overline{A}}

Given that:


\quad\quad\quad\quad\tt{ \angle{A = 115° }}

Using cosine rule:


\tt{\overline{A}²=b²+c²-2bc \cos( \angle{a}) }


\tt{\overline{A}²=(30)²+(20)²-2(30)(20) \cos( \angle{115°}) }


\tt{\overline{A}²=900+400-2(600) \cos( \angle{115°}) }


\tt{\overline{A}²=1300-1200 \cos( \angle{115°}) }


\tt{\overline{A} ²=1807.1419}


\tt{\overline{A}= √( 1807.1419)}


\pink {\boxed{ \tt{ \overline{A}=42.51}}}

Now, to find
\tt{ \angle{B}}


\tt{ cos\;B = \frac{ {a}^(2) + {c}^(2) - {b}^(2) }{2ac} }


\tt{ cos\:B = \frac{ {42.51}^(2) + {20}^(2) - {30}^(2) }{2(42.51)(20)} }


\tt{ cos\:B = 0.7687}


\tt{ \angle{B} = { \cos}^( - 1) (0.7687)}


\pink{\boxed{\tt{ \angle{B} = {39.46°}}}}

___________________________________

#CarryOnLearning

✍︎ C.Rose❀

1) Solve for Side A. 2) Solve for Angle B.-example-1
User Marcel Blanck
by
4.4k points
4 votes

Answer:

solution given;

let

AB=a

AC=b=30ft

AB=c=20ft

<A=115°

By using Cosine rule.

a²=b²+c²-2bc cos angle

a²=30²+20²-2*30*20 Cos 115°

a²=1807.1419

a=√[1807.1419]

a=42.51

Side A is 42.51ft.

Again

Cos B=
(a²+c²-b²)/(2ac)

Cos B=
(42.51²+20²-30²)/(2*42.51*20)

Cos B=0.7687

<B=Cos -¹(0.7687)

<B=39.46°

Angle B is 39.46

User Dave Greilach
by
4.6k points