Solution :
The road gradient is given as = tan θ = 0.08
So, θ = 457 degrees, sin θ = 0.08
a). While moving downhill, the terminal velocity the forward force which acts due to the gravitation = backward force due to drag
![$Mg\sin \theta = C_d * (1)/(2) \rho AV^2$](https://img.qammunity.org/2022/formulas/engineering/college/5ighcmze3jntmae3ad1httnfz4gslz0gvd.png)
Taking the air density,
and putting the values we get
![$100 * 9.8 * 0.08 = C_d * (1)/(2) * 1.2 * 0.46 * 15^2$](https://img.qammunity.org/2022/formulas/engineering/college/9in8lldzj1ppjgl799u7bpfi1jxnbm24a6.png)
Therefore,
![$C_d = 1.26$](https://img.qammunity.org/2022/formulas/engineering/college/vens3z4gllu7o1xbtzwxt1t10343ii63rq.png)
This is approximately the same as the value of coefficient of drag given in the question.
Hence verified.
b). Drag force on level road, F =
![$C_d * (1)/(2)\rho A V^2$](https://img.qammunity.org/2022/formulas/engineering/college/9vdhyt8qodshu111d8nbdx9z0pum6iwbmi.png)
Hence, deceleration :
![$F/m = C_d * (1)/(2m) \rho AV^2$](https://img.qammunity.org/2022/formulas/engineering/college/s7e7ku48973mnzmmx5h91edxhnpghwqr89.png)
![$dV/dt = C_d * (1)/(2m) \rho AV^2$](https://img.qammunity.org/2022/formulas/engineering/college/bvnqmu5hu9e7dqtel5wf06mnck9tj7q29f.png)
![$(dV/ds)(ds/dt) = C_d * (1)/(2m) * \rho AV^2$](https://img.qammunity.org/2022/formulas/engineering/college/fc1dcjjlgf9mukvy590ocgs8axwrrcbkyl.png)
![$V(dV/ds) = C_d * (1)/(2m) * \rho AV^2$](https://img.qammunity.org/2022/formulas/engineering/college/kvhep7i7rps9zaz42rcruffqhzwad00jva.png)
![$ dV/V= C_d * (1)/(2m) * \rho A * ds$](https://img.qammunity.org/2022/formulas/engineering/college/zyz7tfdxmgdyrcoo65j2u9xq30ukdczmzu.png)
Integrating both the sides, we get
![$\ln (V_2/V_1) = C_d * (1)/(2m) * \rho A * (s_2-s_1)$](https://img.qammunity.org/2022/formulas/engineering/college/5f4rbppi1xsemk4uzhb4qdgzuwe70sfl7i.png)
Hence,
![$s_2-s_1 = (2m)/(C_d) * \ln (V_2/V_1) / \rho A$](https://img.qammunity.org/2022/formulas/engineering/college/lcutj4lecqql95ey4h0qgk4qdcjm1k6q5w.png)
Putting the values,
Distance =
![$2 * (100)/(1.2) * ( \ln(10/15))/((1.2 * 0.46))$](https://img.qammunity.org/2022/formulas/engineering/college/ymy7eqtz0vdz9cy8s2udzvf7zy6w93xsqs.png)
= -122.5 m
Therefore, ignoring the negative sign, we get distance = 122.5 m