Answer:
Hence, the list ten different possible outcomes are
, the probability distribution of X are
and the cumulative distribution function is
![F(x)=\left\{\begin{array}{lc}0 & x<0 \\0.3 & 0 \leq x<1 \\0.9 & 1 \leq x<2 \\1 & 2 \leq x\end{array}\right.](https://img.qammunity.org/2022/formulas/mathematics/college/qa7ukxsvw5hwlxq2bj34wxemimm6nt0bru.png)
Explanation:
(a)
List the ten different possible outcomes.
The number of ways that two boards are drawn from each lot of
lots are
![{5 \choose 2}](https://img.qammunity.org/2022/formulas/mathematics/college/531pz70enjm7kxy8yex6dd3lmr3a0eq4hp.png)
![{5 \choose 2}=(5!)/(2!(5-2)!)](https://img.qammunity.org/2022/formulas/mathematics/college/p5f6spa1ej7ouk9dxm9pggjzouj1c25hal.png)
![\Rightarrow {5 \choose 2}=(5* 4* 3!)/(2!* 3!)](https://img.qammunity.org/2022/formulas/mathematics/college/vpobeu4ys0e5v9rs5hlbdcz98326gz0bma.png)
![\Rightarrow {5 \choose 2}=(5* 4)/(2!)](https://img.qammunity.org/2022/formulas/mathematics/college/opx2o7a5a4hjsbghyk2gkb37y5pabsllki.png)
![\Rightarrow {5 \choose 2}=(20)/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/cevqqepbgdn4aq2jwxstyjtd1wgugj2fds.png)
![\Rightarrow {5 \choose 2}=10](https://img.qammunity.org/2022/formulas/mathematics/college/6yb1c8587e9hdqobr9v6urduxoe5w80yu3.png)
So, the
combinations are as follows :
![(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)](https://img.qammunity.org/2022/formulas/mathematics/college/igoebvdhd806xtu7zq2eiiof66sy8ro1kf.png)
(b)
The aim is to find the probability distribution when two boards are chosen at random and board's one and two is the only defective boards.
Let X be the number of defective boards in the lot.
Therefore, select the combinations of the boards that are without 1 and 2 from 10 combinations.
Compute the
![P(X=0)](https://img.qammunity.org/2022/formulas/mathematics/college/wllxc1ahwr5sbrl1g42htvtfgb926da4fj.png)
![P(X=0)=P\{(3,4),(3,5),(4,5)\}](https://img.qammunity.org/2022/formulas/mathematics/college/wge45uldtsg5lz54spd3ct9ic7e4n0ntbq.png)
![=(3)/(10)](https://img.qammunity.org/2022/formulas/mathematics/college/ku2xryfsv5kfb38hudc1lonky3bi7l8yeq.png)
![=0.3](https://img.qammunity.org/2022/formulas/mathematics/college/nphrnaeyrseq3yb6ra2czdz4jcnldpzdl8.png)
The probability that defectives did not occur in the lot is 0.3
Compute the
![P(X=1)](https://img.qammunity.org/2022/formulas/mathematics/college/711l2h1zn0jlhtfxjwymto7qhxsu5oiitw.png)
Select the combinations of the boards that are with one defective either 1 and 2 from the 10 combinations.
![P(X=1)=P\{(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)\}](https://img.qammunity.org/2022/formulas/mathematics/college/qvyanm7718r60bdtz5x1la16qmao2skkv5.png)
![=(6)/(10)](https://img.qammunity.org/2022/formulas/mathematics/college/fqkt2m4x517y8e8hwyl8gbqkklva3375vr.png)
![=0.6](https://img.qammunity.org/2022/formulas/mathematics/college/2062r89j5c7yj7g5m7zwmimypddf0ju340.png)
The probability that one defectives occurred in the lot is 0.6.
Compute the
![P(X=2)](https://img.qammunity.org/2022/formulas/mathematics/college/cf5sd325qsokjuikkuepue9fwodt34zob8.png)
Select the combinations of the boards that are with two defective 1 and 2 from the 10 combinations.
![P(X=2)=P\{(1,2)\}](https://img.qammunity.org/2022/formulas/mathematics/college/ouh2wyq43q64oa4kfm0s7xhqm0dxpyo86r.png)
![=(1)/(10)](https://img.qammunity.org/2022/formulas/mathematics/college/40oog2xngm4sfub6g7ahbivzrdo5wrgchl.png)
![=0.1](https://img.qammunity.org/2022/formulas/mathematics/college/gl1usgnuruqqvzvuggtntyxn655fmh3049.png)
The probability that two defectives occurred in the lot is 0.1.
(c)
The cumulative distribution function (cdf)
is defined as,
![\begin{aligned}F(X&=x)=P(X \leq x) \\F(0) &=P(X \leq 0) \\&=P(X=0) \\&=0.3 \\F(1) &=P(X \leq 1) \\&=P(X=0)+P(X=1) \\&=0.3+0.6 \\&=0.9 \\F(2) &=P(X \leq 2) \\&=P(X=0)+P(X=1)+P(X=2) \\&=0.3+0.6+0.1 \\&=1.0\end{aligned}](https://img.qammunity.org/2022/formulas/mathematics/college/zv0bhn0j1rvc9540kkd51u2uekpq2gdx0w.png)
Therefore, the cumulative distribution function (cdf)
is,
![F(x)=\left\{\begin{array}{lc}0 & x<0 \\0.3 & 0 \leq x<1 \\0.9 & 1 \leq x<2 \\1 & 2 \leq x\end{array}\right.](https://img.qammunity.org/2022/formulas/mathematics/college/qa7ukxsvw5hwlxq2bj34wxemimm6nt0bru.png)