150,083 views
22 votes
22 votes
Find the integral
∫√(9+x)/(9-x)

User Hooli
by
2.7k points

1 Answer

12 votes
12 votes

I suppose you mean


\displaystyle \int (√(9+x))/(9-x) \, dx

Substitute y = √(9 + x). Solving for x gives x = y² - 9, so that 9 - x = 18 - y², and we have differential dx = 2y dy. Replacing everything in the integral gives


\displaystyle \int (2y^2)/(18 - y^2) \, dy

Simplify the integrand by dividing:


(2y^2)/(18 - y^2) = -2 + (36)/(18 - y^2)


\implies \displaystyle \int \left((36)/(18-y^2) - 2\right) \, dy

For the first term of this new integral, we have the partial fraction expansion


\frac1{18 - y^2} = \frac1{√(72)} \left(\frac1{√(18)-y} + \frac1{√(18)+y}\right)


\implies \displaystyle (36)/(√(72)) \int \left(\frac1{√(18)-y} + \frac1{√(18)+y}\right) \, dy - 2 \int dy

The rest is trivial:


\displaystyle √(18) \int \left(\frac1{√(18)-y} + \frac1{√(18)+y}\right) \, dy - 2 \int dy


= \displaystyle √(18) \left(\ln\left|√(18)+y\right| - \ln\left|√(18)-y\right|\right) - 2y + C


= \displaystyle √(18) \ln\left|(√(18)+y)/(√(18)-y)\right| - 2y + C


= \boxed - 2√(9+x) + C

User Matteo De Felice
by
2.9k points