Answer:
The answer is "2653".
Explanation:
![Sample \ Size = 99\% \ Cl\\\\ E =60 \\\\\sigma= 1200\\\\](https://img.qammunity.org/2022/formulas/mathematics/high-school/gbt5cl15wvks4077f3efg3q5aa88r92tda.png)
Minimum sample size for Cl level
and Desired Margin of Error,
is:
![\to P(|\bar{x}-\mu| < E) \geq 1-\alpha \\\\\to P(\frac{\bar{x}-\mu}{(\sigma)/(√(n))} <- (E)/((\sigma)/(√(n)))) \leq (\alpha)/(2) \\\\\to - (E)/((\sigma)/(√(n))) \leq -z_{(\alpha)/(2)} \\\\\to n\geq (\frac{ z_{(\alpha)/(2) * \alpha} }{E})^2 \\\\](https://img.qammunity.org/2022/formulas/mathematics/high-school/jvimchlyi1g4hvw3xc5ap6qdq2o1x4n7tw.png)
The minimum n has to be integer, we take the ceiling Of above number and get n = 2663
The exact z-value.
![n \geq ((2.5758293035489 * 1200)/(60))^2 \\\\= 2653.95864](https://img.qammunity.org/2022/formulas/mathematics/high-school/b850gzz3zgpmrxrh5kbfit61yc38wfgm2x.png)
using critical value of 2,575, which gives 2652.25
![\to n =2653](https://img.qammunity.org/2022/formulas/mathematics/high-school/v8ccxb0gdilqnx9g10zy9gf36bqwuip5a4.png)