198k views
2 votes
Using the distributive property, Marta multiplied the binomial (2x + 3) by the trinomial (x2 + x – 2) and got the expression below.

(2x)(x2) + (2x)(x) + (2x)(–2) + (3)(x2) + (3)(x) + (3)(–2)

Which is the simplified product?

1 Answer

3 votes

Answer:


2x^3 + 5x^2 -x -6

Explanation:

Given


(2x)(x^2) + (2x)(x) + (2x)(-2) + (3)(x^2) + (3)(x) + (3)(-2)

Required

The simplified product

We have:


(2x)(x^2) + (2x)(x) + (2x)(-2) + (3)(x^2) + (3)(x) + (3)(-2)

Open bracket


(2x)(x^2) + (2x)(x) + (2x)(-2) + (3)(x^2) + (3)(x) + (3)(-2) = 2x^3 + 2x^2 -4x + 3x^2 + 3x -6

Collect like terms


(2x)(x^2) + (2x)(x) + (2x)(-2) + (3)(x^2) + (3)(x) + (3)(-2) = 2x^3 + 2x^2+ 3x^2 -4x + 3x -6
(2x)(x^2) + (2x)(x) + (2x)(-2) + (3)(x^2) + (3)(x) + (3)(-2) = 2x^3 + 5x^2 -x -6

Hence, the simplified product is:
2x^3 + 5x^2 -x -6

User David Pisoni
by
5.3k points