Answer:
A. (x − p) (x + p) = x² - p²
B. (x – 5) (x + 7) = x² + 2x - 35
C. (x + p) (x + p) = x² + 2px + p²
Explanation:
To find - Multiply and match each of the following expressions.
A. (x − p) (x + p)
B. (x – 5) (x + 7)
C.(x + p) (x + p)
Proof -
A.)
The expression is - (x − p) (x + p)
Now,
(x − p) (x + p) = x(x + p) - p(x + p)
= x(x) + x(p) - p(x) - p(p)
= x² + xp - px - p²
= x² - p²
⇒(x − p) (x + p) = x² - p²
B.)
The expression is - (x – 5) (x + 7)
Now,
(x − 5) (x + 7) = x(x + 7) - 5(x + 7)
= x(x) + x(7) - 5(x) - 5(7)
= x² + 7x - 5x - 35
= x² + 2x - 35
⇒(x − 5) (x + 7) = x² + 2x - 35
C.)
The expression is - (x + p) (x + p)
Now,
(x + p) (x + p) = x(x + p) + p(x + p)
= x(x) + x(p) + p(x) + p(p)
= x² + xp + px + p²
= x² + 2px + p²
⇒(x + p) (x + p) = x² + 2px + p²