Working with the right side,
(1 + sin(θ))/(1 - sin(θ)) - (1 - sin(θ))/(1 + sin(θ))
multiply the first term by (1 + sin(θ))/(1 + sin(θ)) and the second one by (1 - sin(θ))/(1 - sin(θ)). This gives
(1 + sin(θ))/(1 - sin(θ)) • (1 + sin(θ))/(1 + sin(θ)) = (1 + sin(θ))^2 / (1 - sin^2(θ))
… = (1 + sin(θ))^2 / cos^2(θ)
and
(1 - sin(θ))/(1 + sin(θ)) • (1 - sin(θ))/(1 - sin(θ)) = (1 - sin(θ))^2 / (1 - sin^2(θ))
… = (1 - sin(θ))^2 / cos^2(θ)
Now combine the fractions, expand the numerator, and simplify:
(1 + sin(θ))^2 / cos^2(θ) - (1 - sin(θ))^2 / cos^2(θ) = ((1 + sin(θ))^2 - (1 - sin(θ))^2) / cos^2(θ)
… = ((1 + 2 sin(θ) + sin^2(θ)) - (1 - 2 sin(θ) + sin^2(θ))) / cos^2(θ)
… = 4 sin(θ) / cos^2(θ)
… = 4 • sin(θ)/cos(θ) • 1/cos(θ)
… = 4 tan(θ) sec(θ)