215,534 views
12 votes
12 votes
In triangle ABC, the measure of ∠B is 90°, BC=16, and AC=20. Triangle DEF is similar to triangle ABC, where vertices D, E, and F correspond to vertices A, B, and C, respectively, and each side of triangle DEF is 1/3 the length of the corresponding side of triangle ABC. What is the value of sinF?



User Cassia
by
3.2k points

1 Answer

24 votes
24 votes
  • AC=Hypotenuse=20
  • BC=Base=16

AB:-

Apply Pythagorean theorem


\\ \rm\rightarrowtail P^2=H^2-B^2


\\ \rm\rightarrowtail P^2=20^2-16^2


\\ \rm\rightarrowtail P^2=400-256


\\ \rm\rightarrowtail P^2=144


\\ \rm\rightarrowtail AB=12

Now

  • DE=AB/3=12/3=4
  • EF=BC/3=16/3=5.3
  • DF=AC/3=20/3=6.6

Now


\\ \rm\rightarrowtail sinF=(DE)/(DF)


\\ \rm\rightarrowtail sinF=(4)/(6.6)


\\ \rm\rightarrowtail sinF=0.61

In triangle ABC, the measure of ∠B is 90°, BC=16, and AC=20. Triangle DEF is similar-example-1
In triangle ABC, the measure of ∠B is 90°, BC=16, and AC=20. Triangle DEF is similar-example-2
User QkuCeHBH
by
2.9k points