Answer:
0.51 and 11.24 seconds.
Explanation:
The height h of a rocket with an initial upward velocity of 188 feet per second after t seconds is modeled by the function:
![h(t)=188t-16t^2](https://img.qammunity.org/2022/formulas/mathematics/high-school/um0vsoic3b3hwpjpkkyrr3ig3dw3nrr1r2.png)
And we want to find all values of t for which the rocket's height is 92.
So, we can set h(t) = 92 and solve for t:
![92=188t-16t^2](https://img.qammunity.org/2022/formulas/mathematics/high-school/ut6ynsh3kz5sd1pt526ia37925lxt6t42l.png)
We can divide everything by four:
![23=47t-4t^2](https://img.qammunity.org/2022/formulas/mathematics/high-school/8aq7ka1xd8c1bq6pmcy3zbv77t14ke54nj.png)
Rearrange the equation:
![4t^2-47t+23=0](https://img.qammunity.org/2022/formulas/mathematics/high-school/qd8cjmkakbjrpw0nl3riimhqdu8pl8fmi6.png)
We can use the quadratic formula:
![\displaystyle x=(-b\pm√(b^2-4ac))/(2a)](https://img.qammunity.org/2022/formulas/mathematics/high-school/iipuedmc7a1mozjrvbx5z80tpb75pjqmzg.png)
In this case, a = 4, b = -47, and c = 23. Substitute:
![\displaystyle x=(-(-47)\pm√((-47)^2-4(4)(23)))/(2(4))](https://img.qammunity.org/2022/formulas/mathematics/high-school/pdu8kicy4s999doo6w39y73qbexj4hmi4x.png)
Evaluate:
![\displaystyle x=(47\pm√(1841))/(8)](https://img.qammunity.org/2022/formulas/mathematics/high-school/51z7e3a7mkbzz2xa1qkcu2gpmwbnbd39wf.png)
Hence, our two solutions are:
![\displaystyle x=(47+√(1841))/(8)\approx 11.24\text{ or } x=(47-√(1841))/(8)\approx0.51](https://img.qammunity.org/2022/formulas/mathematics/high-school/tkx6sebkm4hb18x53fonr5l6zk6d9gf4kw.png)
So, the rocket reaches a height of 92 feet after 0.51 seconds and again after 11.24 seconds.