441,415 views
41 votes
41 votes
KINDLY SOLVE IT WITH EXPLANATION!!
DONT STEAL POINTS ^-^​

KINDLY SOLVE IT WITH EXPLANATION!! DONT STEAL POINTS ^-^​-example-1
User Jpoh
by
3.1k points

2 Answers

19 votes
19 votes

Given:


\sf{\dots\implies{\frac{{9}^(n) * {3}^(2) *({{3}^{(- n)/(2) })}^(- 2) -27^2}{ {3}^(3m)*{2}^(3)}}}


\rule{80mm}{1pt}

What are asked to do?

We need to simply
\sf{\frac{{9}^(n) * {3}^(2) *({{3}^{(- n)/(2) })}^(- 2) -27^2}{ {3}^(3m)*{2}^(3)}}.


\rule{80mm}{1pt}

Solution:


\sf{\dots\implies{\frac{{9}^(n) * {3}^(2) *({{3}^{(- n)/(2) })}^(- 2) -(27)^2}{ {3}^(3m)*{2}^(3)}}}


\sf{\dots\implies{\frac{{3}^(2n) * {3}^(2) *({{3}^{\frac{ \cancel{- }n}{ \cancel2} })}^{ \cancel{- 2}} -(3^(3) )^(2) }{ {3}^(3m)*{2}^(3)}}}


\sf{\dots\implies{\frac{{3}^(2n) * {3}^(2) *({{3)}^(n)} -(3 )^(6) }{ {3}^(3m)*{2}^(3)}}}

Since the base (3) is same so just add the exponents of multiple one.


\sf{\dots\implies{\frac{{3}^((2n + 2 + n))-(3 )^(6) }{ {3}^(3m)*{2}^(3)}}}


\sf{\dots\implies{\frac{{3}^((3n + 2))-(3 )^(6) }{ {3}^(3m)*{2}^(3)}}}


\sf{\dots\implies{\frac{{3}^((3n + 2))-(27 )^(2) }{ {3}^(3m)*{2}^(3)}}}


\sf{\dots\implies{\frac{{3}^((3n + 2))-( {3}^(2) * {9}^(2) )}{ {3}^(3m)*{2}^(3)}}}

Take 3² as common.


\sf{\dots\implies{\frac{ {3}^(2)(({3)}^(3n)-9^(2))}{ {3}^(3m) * 8}}}

Solve the powers.


\sf{\dots\implies{\frac{ 9({27}^(n)-81)}{ {27}^(m) * 8}}}

Again take 27 as common.


\sf{\dots\implies{\frac{ 9 * 27({1}^(n)-3)}{ {27}^(m) * 8}}}

User Spikyjt
by
3.2k points
26 votes
26 votes

Refer to the attachment for solution and below for steps!!


\purple{ \rule{300pt}{3pt}}

  • Write the number in exponential form with the base of 3
  • Simplify the expression by multiplying exponents
  • Evaluate the power
  • Calculate the product
  • Use the commutative property to reorder the terms
  • Evaluate the power
  • And, We are done solving!!~
KINDLY SOLVE IT WITH EXPLANATION!! DONT STEAL POINTS ^-^​-example-1
User Caffeinatedwolf
by
3.1k points